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Введение

Диссертационная работа посвящена проблемам выбора моделей в задачах регрессионно-

го анализа и классификации. Предлагается подход, согласно которому выбор производится

из индуктивно-порождаемого множества моделей. Анализируется распределение параметров

моделей. На основании этого анализа выбирается модель оптимальной сложности.

Ключевые слова: машинное обучение, интеллектуальный анализ данных, регрессионный

анализ, классификация, выбор моделей, порождение моделей, байесовский подход.

Актуальность темы. Модель, описывающая исследуемое явление, может быть получена

двумя путями: во-первых, методами математического моделирования, во-вторых, методами

анализа данных и информационного моделирования. Первый тип моделей интерпретируем

экспертами в контексте моделируемого явления [19]. Второй тип моделей не всегда интерпре-

тируем, но более точно приближает данные [148]. Совмещение достоинств обоих подходов,

результатом которого является получение интерпретируемых и достаточно точных моделей,

является актуальной задачей теоретической информатики.

Центральным объектом исследования является проблема построения адекватных моде-

лей регрессии и классификации при решении задач прогнозирования. Проблема заключается

в отыскании моделей оптимальной сложности, которые описывают измеряемые данные с за-

данной точностью. Дополнительным ограничением является интерпретируемость моделей

экспертами той предметной области, для решения задач которой создается модель.

Цель исследования заключается в создании и обосновании методов выбора моделей из ин-

дуктивно порождаемого множества, а также в исследовании свойств алгоритмов выбора мо-

делей. Задача выбора моделей из счетного порождаемого множества поставлена впервые.

При постановке задачи использовался обширный материал о способах выбора моделей и вы-

бора признаков из конечного множества, наработанный ранее в области машинного обучения.

Эта задача является одной из центральных проблем машинного обучения и интеллектуаль-

ного анализа данных.

Основной задачей исследования является разработка методов последовательного порож-

дения моделей и оценки ковариационных матриц параметров моделей с целью управления

процедурой выбора моделей. Основной сложностью такой задачи является необходимость

выбора из значительного числа регрессионных моделей, либо необходимость оценки пара-

метров структурно сложной, так называемой «универсальной» модели.

Взаимосвязь задачи порождения и задачи выбора регрессионных моделей была освещена

в начале 1980-х годов А. Г. Ивахненко. Согласно предложенному им методу группового учета

аргументов [59, 17, 14], модель оптимальной структуры может быть найдена путем после-

довательного порождения линейных моделей, в которых компоненты являются мономами

полинома Колмогорова-Габора от набора независимых переменных. Критерий оптимально-

сти структуры модели задается с помощью скользящего контроля.

В отличие от этого метода, метод символьной регрессии [402, 258, 269, 296] рассматривает

порождение произвольных нелинейных суперпозиций базовых функций. В последние годы

тема анализа сложности моделей, получаемых с помощью этого метода, стала распростра-

ненным предметом исследований [208, 390].
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Первоначально принципы индуктивного порождения моделей были предложены в мето-

де группового учета аргументов. Структура суперпозиций задавалась при этом внешними

критериями качества модели. Впоследствии эти критерии были обоснованы в рамках гипоте-

зы порождения данных с помощью связанного байесовского вывода. При последовательном

порождении моделей необходимо оценивать информативность элементов суперпозиции. В

рамках метода байесовской регрессии [147, 131, 151]

для этого предложено использовать функцию плотности распределения параметров моде-

ли. Эта функция является параметрической и ее параметры были названы гиперпараметра-

ми [386, 148, 150, 149]. Было предложено использовать гиперпараметры моделей для оценки

информативности элементов суперпозиции, что сделало анализ гиперпараметров одним из

способов выбора моделей.

Для модификации суперпозиций нелинейных моделей был предложен метод оптималь-

ного прореживания [279, 231] Согласно этому методу, элемент суперпозиции можно отсечь

как неинформативный, если значение выпуклости функции ошибки от параметров модели

не превосходит относительный заданный порог.

Задача выбора модели является одной из самых актуальных в регрессионном анализе.

В современной зарубежной литературе для ее решения используется принцип минималь-

ной длины описания. Он предлагает использовать для описания данных наиболее простую

и одновременно наиболее точную модель [217, 222, 218, 219, 267].

Задача сравнения моделей детально разработана [293, 292, 294, 162, 291]. Как альтернати-

ва информационным критериям [158, 159, 116, 117, 186, 391] был предложен метод двухуров-

невого байесовского вывода. На первом уровне вывода настраиваются параметры моделей.

На втором уровне настраиваются их гиперпараметры. Согласно этому методу, вероятность

выбора более сложной модели ниже вероятности выбора простой модели при сравнимом зна-

чении функции ошибки на регрессионных остатках. Принципы байесовского подхода для вы-

бора линейных моделей регрессии и классификации предложены авторами [164, 128, 132, 133].

В то же время, в упомянутых публикациях и подходах остается открытым ряд важных

проблем, решение которых определяет актуальность представляемой диссертации. Поэтому

представляется целесообразным создать и развить теорию порождения и выбора регресси-

онных моделей. Она заключается в следующем. Множество моделей заданного класса ин-

дуктивно порождается набором параметрических базовых функций, заданных экспертами.

Каждая модель является допустимой суперпозицией таких функций.

Интерпретируемость моделей обеспечена тем, что каждая из порождаемых моделей явля-

ется суперпозицией базовых функций, заданных экспертами. Класс моделей задается прави-

лами порождения суперпозиций. Точность моделей обеспечивается тем, что рассматривается

достаточно большой набор моделей-претендентов, из которого выбирается оптимальная мо-

дель. Критерий оптимальности включает в себя понятия сложности и точности модели. При

построении критерия учитывается гипотеза порождения данных — предположение о распре-

делении регрессионных остатков.

Одновременно с оценкой параметров вычисляются и гиперпараметры (параметры рас-

пределения параметров) модели. На основе гиперпараметров оценивается информативность
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элементов суперпозиции и оптимизируется её структура. Оптимальные модели выбираются

согласно критерию, заданному гипотезой порождения данных.

Таким образом, требуется предложить новые подходы к решению поставленной задачи.

Множество моделей индуктивно порождается из набора базовых функций, заданных экспер-

тами. Каждая модель является допустимой суперпозицией базовых функций. Одновременно

с оценкой параметров моделей выполняется также и оценка гиперпараметров функции рас-

пределения параметров моделей. На основе этих параметров оценивается информативность

элементов суперпозиции и принимается решение об оптимизации ее структуры. Оптималь-

ные модели выбирается согласно критерию, заданному гипотезой порождения данных.

В связи с вышеизложенным, решение крупной задачи теории распознавания, в рамках

которой будут предложены новые способы порождения и выбора моделей регрессии и клас-

сификации, является актуальной темой.

Цель диссертационной работы — создание нового математического подхода для ре-

шения задачи последовательного выбора регрессионных моделей. Цель работы находится

в рамках направления «создание и исследование информационных моделей, моделей дан-

ных и знаний, методов машинного обучения и обнаружения новых знаний».

В частности, цель работы включает в себя:

1) создание и обоснование методов выбора индуктивно порождаемых моделей для решения

задач регрессии и классификации,

2) исследование ограничений, накладываемых на структуру суперпозиции различными ал-

горитмами выбора моделей,

3) исследование структуры последовательно порождаемых суперпозиций и свойств парамет-

ров моделей.

Эти цели соответствуют направлению области исследования специальности 05.13.17 «раз-

работка и исследование моделей и алгоритмов анализа данных, обнаружения закономерно-

стей в данных а также создание техники, которая предоставляет, во-первых, совокупность

методов разработки математических моделей и, во-вторых, возможность интерпретации мо-

делей в той прикладной области знаний, в рамках которой эти модели создаются» (пп. 5,

12).

На защиту выносятся следующие результаты.

1. Формализованы и исследованы в рамках предложенного языка методы выбора моделей

для основных классов моделей: линейных, обобщенно-линейных и существенно нелиней-

ных. Предложены способы конструктивного порождения указанных классов моделей. При

выборе моделей решается многокритериальная оптимизационная задача, которая опреде-

лена классом порожденных моделей. В работе исследуются только те методы выбора мо-

делей, которые при решении задачи позволяют анализировать также и информативность

отдельных элементов суперпозиций.
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2. Исследованы условия, накладываемые на множество суперпозиций, при которых задан-

ные алгоритмы оценки информативности элементов суперпозиций являются коррект-

ными. Каждому алгоритму, оценивающему гиперпараметры, ставится в соответствие про-

цесс выбора элементов суперпозиции путем полного перебора всевозможных структур су-

перпозиции. Корректным называется такой алгоритм, который доставляет ту же ранго-

вую оценку информативности элементов суперпозиции, что и алгоритм полного перебора.

3. Предложен способ оценки информативности элементов суперпозиций путем анализа

пространства параметров моделей. Каждому элементу суперпозиции ставится в соответ-

ствие вектор параметров, который рассматривается как многомерная случайная величи-

на. При заданной гипотезе порождения данных выполняется приближение эмпирического

распределения параметров модельной параметрической функцией распределения. Оцени-

ваются гиперпараметры — параметры распределения параметров моделей. Данная оценка

является информативностью элемента суперпозиции.

4. Получены критерии сходимости последовательно порождаемых суперпозиций. Так как

задача выбора моделей является многокритериальной, то при их индуктивном порож-

дении выбирается такая подпоследовательность, значения критериев качества которой

сходится к заданному Парето-оптимальному фронту.

5. Разработана универсальная методика порождения и выбора моделей. Так как множество

порождаемых моделей счётно, то предлагается методика последовательного их порожде-

ния. Она заключается в том, что на каждом шаге анализируется информативность эле-

ментов порождаемых моделей, после чего модель модифицируется таким образом, чтобы

доставить наибольшее увеличение значению критерия выбора модели на данном шаге.

6. Развит метод Белсли для ковариационной матрицы параметров нелинейных моделей.

Предложен критерий отыскания мультиколлинеарности. Поставлена и решена оптимиза-

ционная задача последовательного исключения элементов модели. Полученное решение

позволяет получать устойчивые модели.

Научная новизна. Выносимые на защиту результаты (1–6) являются новыми; также но-

выми являются следующие результаты, ранее опубликованные автором в рецензируемых

журналах: 1) метод индуктивного порождения регрессионных моделей как суперпозиций

гладких функций из заданного множества; 2) алгоритм выбора наиболее информативных

элементов суперпозиции с помощью вектора гиперпараметров; 3) метод выбора опорного

множества объектов как альтернатива процедурам регуляризации при построении инте-

гральных индикаторов; 4) алгоритм поиска опорного множества объектов при построении

устойчивых интегральных индикаторов; 5) алгоритм согласования экспертных оценок в ран-

говых шкалах: используется линейная комбинация конусов экспертных оценок в простран-

стве интегральных индикаторов и в пространстве весов показателей.

Методика исследования: методы алгебраического подхода к решению задач распознава-

ния; методы вычислительной линейной алгебры, многомерной статистики и теории машин-

ного обучения; методы теории категорий. В рамках машинного обучения используются такие
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методы как связанный байесовский вывод, метод минимальной длины описания, устойчивое

оценивание параметров, аппроксимация Лапласа в пространстве параметров. Все эти мето-

ды являются новыми и активно обсуждаются в научных публикациях в течение последних

лет.

Достоверность и обоснованность результатов подтверждена строгостью и корректно-

стью математических высказывание и доказательств. Была выполнена экспериментальная

проверка полученных результатов на задачах с модельными и реальными данными. Резуль-

таты исследований неоднократно обсуждались на российских и международных научных

конференциях. Результаты исследования опубликованы в рецензируемых научных изданиях

из числа рекомендованных ВАК РФ.

Теоретическая значимость. Впервые связаны методы порождения и методы выбора мо-

делей. При этом снята проблема оценки параметров и их ковариационных матриц моделей

большой структурной сложности, так как для этой оценки параметров последующих моде-

лей используются результаты анализа ранее порожденных моделей. Такой подход позволяет

получать устойчивые оценки параметров в условиях большого числа мультикоррелирующих

и шумовых признаков. Для выбора конкурирующих моделей используется байесовский под-

ход, что позволяет получить модель оптимальной статистической сложности.

Практическая значимость. Работа носит преимущественно теоретический характер.

Для иллюстрации возможных практических применений в последней главе работы приве-

дены математические постановки прикладных задач, при решении которых были исполь-

зованы результаты работы. Ниже дан перечень моделей, созданных в рамках предложен-

ной теории (в скобках указана организация, предложившая задачу): Элементы работы бы-

ли использованы при подготовке патентов, зарегистрированных в European Patent Office,

Patent No. 06808733.7 — 1240 PCT/GB2006060369, Title: Particle Detector и в United States,

Patent Application No. 12/092,623 — SP/RJG/JH/642US00, Title: Dactyl Detector. Получе-

но свидетельство о государственной регистрации программ для ЭВМ «Программная систе-

ма для построения интегральных индикаторов качества» VVS_CCRAS_IIC_1, свидетель-

ство № 2010613192.

Апробация работы. Основные результаты работы и отдельные её части докладывались

на конференциях:

– международная конференция «Conference of the International Federation of Operational

Research Societies», Барселона — 2014 г. [373];

– международная конференция «European Conference on Operational Research», Бонн —

2009 г. [367]; Лиссабон — 2010 г. [375]; Вильнюс — 2012 г. [377]; Рим — 2013 г. [372];

– международная конференция «Operational Research: Mastering Complexity», Бонн —

2010 г.[374], Цюрих — 2011 г. [376];
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– всероссийская конференция «Математические методы распознавания образов»,

Москва — 2003, 2005, 2007, 2009 гг. [20, 77, 25, 27];

– международная конференция «Интеллектуализация обработки информации», Симфе-

рополь — 2006, 2008 гг. [80, 365];

– международная конференция «Математика. Компьютер. Образование», Дубна — 2005,

2006, 2008, 2009 гг. [371, 87, 82, 21];

– международная конференция «SIAM Conference on Computational Science and

Engineering», Майами — 2009 г. [366];

– международный форум «Quo Vadis Energy in Times Of Climate Change», Загреб —

2009 г. [368];

– международная конференция «Citizens and Governance for Sustainable Development»,

Вильнюс — 2003, 2006 гг. [369, 364].

Результаты работ обсуждались на семинарах в институтах:

– Centre de Recherche de Cordelières, Univercité Pierre et Marie Curie, Париж — 2007 г.

(рук. семинара Dr. Doroty Bray, president of ImmunoClin Laboratory);

– Département Signaux et Systèmes Électroniques, SUPÉLEC, Жиф-Сюр-Иветт — 2008 г.

(рук. семинара Prof. Gilles Fleury, Chef de Departement);

– Centre de recherche en imagerie médicale, Лион — 2009 г. (рук. семинара Prof. Isabelle

Magnin, Research Director of the Сenter);

– SwissQuant AG, Цюрих — 2009 г. (рук. семинара Dr. Florian Herzog, Director of the

Laboratory).

Полученные результаты обсуждались в течение 2005–2011 годов с рядом европейских ис-

следователей. Теория порождения и выбора моделей обсуждалась с Prof. Gilles Fleury (Chef

de Departement Signaux et Systemes Electroniques, SUPELEC), в рамках ежегодного заседания

форума научного фонда Digiteo в Жиф-Сюр-Иветт, Франция. Приложения теории в области

порождения моделей в медицине обсуждались во время лекции, прочитанной автором дан-

ного проекта в Centre de recherche en imagerie medicale, в Лионе, Франция, по приглашению

Prof. Isabelle Magnin (Research Director of the Сenter). Приложения теории в области финансо-

вого анализа обсуждались во время лекции, прочитанной автором в лаборатории swissQuant

в Цюрихе, Швейцария, по приглашению Dr. Florian Herzog (Director of the Laboratory).

По тематике работы были прочитаны циклы лекций в Middle East Technical University,

Турция — 2009 г. (по приглашению Prof. Wilhelm-Gerhard Weber, Research Director of the

Institute of Applied Mathematics) и в University Siegen, Германия — 2011 г. (по приглашению

Prof. Peter Letmathe, Chair of Business Administration).

Материалы работы легли в основу обязательного курса «Прикладной регрессионный ана-

лиз» для студентов шестого курса Кафедры интеллектуальных систем ФУПМ МФТИ (курс
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читается с 2006 г.) и практикума «Математические методы прогнозирования» (выполняется

на кафедре с 2009 г.).

Работа поддержана грантами Российского фонда фундаментальных исследований и Ми-

нистерства образования и науки РФ:

1) 04-01-00401-а «Распознавание и прогнозирование экстремальных ситуаций в сложных си-

стемах по многомерным временным рядам наблюдений»,

2) 05-01-08030-офи «Создание комплекса программных средств для имитационного модели-
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10) 07.514.11.4001, контракт 2011-04-1.4-20-01-005 «Высокоуровневые модели параллельных

вычислений и их библиотеки поддержки времени выполнения: прогнозирвание вторичной

струкуры белка».

Личный вклад. Все результаты, выносимые на защиту, получены автором лично и не

имеют пересечений с результатами его кандидатской диссертации.

Полный текст диссертации находится на персональной странице автора по адре-

су http://www.ccas.ru/strijov/papers/Strijov2014MdlSel.pdf

Публикации. Результаты диссертации описаны в 31-й статье в журналах, рекомендован-

ных ВАК, в частности работах [273, 316, 40, 39, 11, 44, 379, 35, 37, 9, 10, 36, 38, 93, 109, 12,

8, 6, 31, 30, 7, 33, 378, 106, 92, 45, 381, 28, 84, 23, 81].



14

Описания отдельных результатов работы включались в научные отчёты по проектам РФ-

ФИ 04-01-00103-а, 04-01-00401-а, 04-01-00401-а, 05-01-08030-офи, 07-01-00064-а, 07-01-12076-

офи, 07-07-00181-а, 07-07-00372-а, 08-01-12022-офи, 10-07-00422-а, 10-07-00673-а, 12-07-13118-

офи, 13-07-00709.

Структура и объём работы. Диссертация состоит из оглавления, введения, перечня ос-

новных обозначений, шести глав, разбитых на параграфы, и списка литературы из 394-х

наименований. Основной текст занимает 343 страницы.

Благодарности. Автор признателен чл.-корр. РАН Константину Владимировичу Руда-

кову за поддержку и внимание к работе, д.ф.-м.н. Константину Вячеславовичу Воронцову

за обсуждение содержания работы и критические замечания, а также аспирантам Вычис-

лительного центра РАН и студентам кафедры «Интеллектуальные системы» Факультета

управления и прикладной математики Московского физико-технического института Михаи-

лу Кузнецову, Анастасии Мотренко, Роману Сологубу, Алексею Зайцеву, Александру Аду-

енко, Анне Варфоломеевой, Арсентию Кузьмину, Марии Стениной, Георгию Рудому, Алек-

сандре Токмаковой и Александру Катруце за сотрудничество и участие в многочисленных

вычислительных экспериментах, проводимых при исследовании свойств предлагаемых мето-

дов.



15

1. Постановка задачи выбора моделей

Важным свойством регрессионных моделей является возможность интерпретации её струк-

туры и её параметров в контексте решаемой прикладной задачи. Различают термины «мате-

матическая модель» и «регрессионная модель». Математическая модель [19, 62] предполагает

участие специалиста-аналитика в конструировании функции, которая описывает некоторую

известную закономерность [142, 195, 74]. Математическая модель является интерпретируе-

мой — объясняемой в рамках исследуемой закономерности. При построении математической

модели сначала создается параметрическое семейство функций, затем с помощью измеря-

емых данных выполняется идентификацией модели, состоящая в нахождении её парамет-

ров [287]. Основное отличие математического моделирования от регрессионного анализа со-

стоит в том, что в первом случае функциональная известна связь зависимой переменной

и свободных переменных. Специфика математического моделирования состоит в том, что

измеряемые данные используются для верификации, но не для построения модели: модель

строится исходя из экспертных предположений о характере и законах моделируемого явле-

ния. При этом затруднительно получить модель сложного явления, в котором взаимосвязано

большое число различных факторов.

Регрессионные модели образуют широкий класс функций, которые описывают некоторую

закономерность [182]. При этом для построения модели в основном используются измеряемые

данные, а не знание свойств исследуемой закономерности. Такая модель часто неинтерпре-

тируема с точки зрения специалистов данной прикладной задачи, но более точна. Это объяс-

няется либо большим числом моделей-претендентов, которые используются для построения

оптимальной модели, либо большей сложностью модели [206, 221, 339, 318].

И на регрессионную, и на математическую модель, накладывается требование непрерыв-

ности отображения. Требование непрерывности обусловлено классом решаемых задач: чаще

всего это описание физических, химических и других явлений, где требование непрерывно-

сти выставляется естественным образом [94, 393, 58, 324, 322, 261]. Примеры регрессионных

моделей: линейные функции, алгебраические полиномы, ряды Чебышёва, нейронные сети

без обратной связи, функции радиального базиса. Модель также может быть представлена

в виде суперпозиции функций свободных переменных из некоторого набора. На функцию

регрессии также могут накладываться ограничения монотонности, гладкости, измеримости

и некоторые другие [97, 63, 58, 94].

Термин «регрессия» введен Фрэнсисом Гальтоном в конце XIX века [157]. Гальтон обна-

ружил, что дети родителей с высоким или низким ростом как правило не наследуют выдаю-

щийся рост и назвал эту закономерность «регрессия к посредственности» [204]. Сначала этот

термин использовался исключительно в биологическом смысле. После работ Карла Пирсона

его стали использовать и в статистике [334]. [125].

Регрессионное моделирование и математическое связаны подходом, который называет-

ся суррогатным моделированием [215, 257]. Согласно этому подходу, сложная в создании

или идентификации математическая модель приближается функцией регрессии. Дана функ-

ция u дискретного или непрерывного аргумента. Требуется найти функцию f из некоторого

параметрического семейства, например, среди алгебраических полиномов заданной степени.
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Параметры функции f должны доставлять минимум некоторому функционалу, например,

ρ(f, u) =
(

1
b−a
∫ b

a
|f(x)− u(x)|2dx

) 1

2

.

При прогнозе с использованием регрессионных моделей используется подход, называе-

мый интер- или экстраполяцией. Интерполяция функций — частный случай задачи прибли-

жения, когда требуется, чтобы в определенных точках, называемых узлами интерполяции,

значения функции u и приближающей её функции f совпадали. В более общем случае на-

кладываются ограничения на значения некоторых производных f . То есть, дана функция u

дискретного аргумента. Требуется отыскать такую функцию f , график которой проходит

через все точки u. При этом понятие расстояния обычно не используется, однако часто вво-

дится понятие гладкости искомой функции.

В работе описаны аналитические и стохастические алгоритмы оптимизации структурных

параметров прогностических регрессионных моделей. Исследуется оптимизация параметров

линейных, обобщенно-линейных и нелинейных моделей. Приняты статистические гипотезы

о распределении зависимой переменной и параметров модели. На основании этих предпо-

ложений принята оптимизируемая функция ошибки. Аналитические алгоритмы основаны

на получении оценок производных функции ошибок относительно параметров модели. Ста-

тистические алгоритмы основаны на сэмплироваинии параметров модели и на процедуре

скользящего контроля элементов регрессионной выборки. Алгоритмы протестированы на

наборе синтетических и реальных задач. Представлены результаты сравнения алгоритмов.

Выполнен анализ ошибок.

При моделировании измеряемых данных одной из важных проблем является оценка точ-

ности модели, аппроксимирующей эти данные. Для оценки точности аппроксимации вводит-

ся функция ошибки, оптимизируемая в данной работе. Предполагая, что данные измеряются

с некоторой погрешностью, будем рассматривать моделирование данных как задачу восста-

новления регрессии [182, 271, 347, 151, 355, 385].

Эта задача состоит в нахождении функции регрессии и оценке параметров регрессион-

ной модели [306, 159, 290]. Параметры модели назначаются таким образом, что модель наи-

лучшим образом приближает данные, минимизируя функцию ошибки. Измеряемые данные

представляют собой пары значений зависимой и независимой переменной.

Для оценки качества решения этой задачи вводится функция ошибки, исходя из значе-

ния которой делается вывод о том, насколько хорошо модель приближает данные, а также

насколько адекватна гипотеза порождения данных [148, 233, 281]. Функция ошибки играет

определяющую роль в выборе параметров регрессионной модели и зависит также от струк-

турных параметров, которые определяются гипотезой порождения данных или априорными

знаниями о виде модели. В данной работе функция ошибки назначается путем байесовского

вывода [148, 189, 323, 331].

Структурными параметрами являются регуляризирующие параметры, включаемые в функ-

ционал качества для штрафа на вектор параметров модели [129, 163, 211]. Оценка струк-

турных параметров [165, 288] является центральной задачей в данной работе. Для оценки

используется метод максимизации правдоподобия модели [328, 123, 118].

Одним из методов максимизации правдоподобия модели является метод аппроксимации

Лапласа [311, 255, 294], в основе которого лежат гипотезы нормального распределения за-
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висимой переменной и вектора параметров модели. В зависимости от вида ковариационных

матриц нормальных распределений зависимой переменной и вектора параметров, вводится

ряд упрощений для максимизации правдоподобия модели. Рассматриваются ковариацион-

ные матрицы диагонального типа, скалярного типа и общего вида.

Альтернативным методом оценки правдоподобия модели является метод Монте-Карло [119,

143]. Согласно этому методу, производится процедура сэмплирования параметров модели

при фиксированных структурных параметрах, и строится аппроксимирующая интеграл сум-

ма значений правдоподобия по сэмплированным параметрам. Оптимальными структурными

параметрами считаются те, которые доставляют максимум аппроксимирующей функции.

Для проверки качества предлагаемых алгоритмов используется метод скользящего кон-

троля оценки структурных параметров [233, 122]. Этот метод не использует вероятностных

предположений о структуре модели. Метод основан на многократном разбиении выборки на

обучающую и контрольную части и подсчете функции ошибки на контрольной части вы-

борки. Наилучшим структурным параметрам соответствуют те, при которых модель дает

минимальную среднюю ошибку на различных разбиениях [130, 197, 217, 218].

Помимо моделей общего вида в работе в качестве частного случая рассматриваются ли-

нейные модели [306, 346]. Их отдельное рассмотрение позволяет выписать некоторые фор-

мулы, как, например, вычисление гессиана функции ошибки [403], в явном виде, и избежать

избыточной оптимизации.

В работе рассматриваются также алгоритмы оптимизации структурных параметров ре-

грессионной модели. Для оценки правдоподобия модели алгоритмы используют метод ап-

проксимации Лапласа функции ошибки, метод Монте-Карло, метод скользящего контроля.

Исследованы свойства предлагаемых методов: сходимость, вычислительная сложность.

При постановке и решении задач регрессионного анализа [322, 312, 226, 309, 172, 114, 359,

236, 238, 349, 205, 166, 398, 198, 209, 341, 242, 261, 88] встают следующие фундаментальные

вопросы.

Как выбрать структуру модели?

Какова гипотеза порождения данных, каково распределение случайной переменной,

какому семейству оно должно принадлежать?

Какова связь гипотезы порождения данных и распределения параметров модели?

Какой функцией ошибки требуется оценивать качество аппроксимации?

Как оценить параметры модели, каков должен быть алгоритм оптимизации парамет-

ров?

Эти вопросы рассматриваются ниже в постановочной главе, и далее в данной работе.

1.1. Функция регрессии и регрессионная модель

Регрессионный анализ — метод анализа измеряемых данных и исследования связи между

независимыми и зависимыми переменными [182, 63, 69, 4]. Измеряемые данные представляют
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собой пары значений зависимой переменной y и независимой переменной x. Считается [67],

что эта зависимость является статистической и имеет вид

E(y|x) = f(ŵ,x). (1)

Регрессия — математическое ожидание случайной величины y, зависящей от другой вели-

чины или от нескольких величин x. Зависимость f называется функцией регрессии от неза-

висимой переменной x при некоторых фиксированных параметрах ŵ. Переменная x также

называется регрессором. Точность, с которой функция f передает изменение в среднем при

изменении x, измеряется дисперсией y, вычисляемой для каждого x: D(y|x) = σ2
y(x). Ес-

ли D(y|x) = 0 при всех значениях x, то с вероятностью равной единице эти величины свя-

заны функциональной зависимостью. Если D(y|x) 6= 0 ни при каком значении x и f(ŵ,x)

не зависит от x, то регрессия y по x отсутствует.

Основной задачей регрессионного анализа является нахождение функции регрессии f

и оценка параметров w. При решении этой задачи используются измеряемые данные — вы-

борка реализаций свободных переменных и зависимой переменной.

Определение 1. Регрессионная выборка D =
{
(xi, yi)

}
m
i=1 — множество m пар, состоя-

щих из вектора xi = [xij ]
n
j=1 значений n свободных переменных и соотвествующего этому

вектору значения зависимой переменной yi.

Далее предполагается, что переменные принадлежат множеству действительных чи-

сел, либо его подмножеству: x ∈ X ⊆ Rn и y ∈ Y ⊆ R1. Индекс i элемента выбор-

ки и индекс j свободной переменной рассматриваются как элементы конечных множеств

i ∈ I = {1, . . . , m} и j ∈ J = {1, . . . , n}.
В дальнейшем будет использоваться также обозначение D = (X,y), где y = [y1, . . . , ym]

T —

вектор значений зависимой переменной и X — матрица плана

X =






xT

1
...

xT

m




 .

Матрицу X можно представить в виде

X = [χ1, . . . ,χn] ,

где χj — j-й столбец матрицы, χj = [χ1, . . . , χn]
T. Регрессионную выборку также удобно

представить как пару

D = (X,y).

Предполагается, что элементы выборки связаны соотношением

yi = f(w,xi) + ε(xi), (2)

которое аддитивно включает случайную величину ε = ε(x). Предположение о том, что то

зависимая переменная есть сумма значений модели и некоторой случайной величины, со-

храняется и ниже. Мультипликативное включение случайной величины в соотношении (2)

может быть представлено в аддитивном виде путем логарифмирования обеих частей выра-

жения при условии, что независимые переменные принимают положительные значения.
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Определение 2. Ошибкой или регрессионным остатком εi называется разность между

значением функции регрессии f(ŵ,xi) и значением зависимой переменной, соответствую-

щей некоторой свободной переменной xi:

εi = f(ŵ,xi)− yi,

или

ε = f − y,

где вектор-функция f = f(w,X) = [f(w,x1), . . . , f(w,xm)]
T ∈ Y.

Выборка может быть как функцией дискретного аргумента, так и отноше-

нием. Например, данные для построения регрессии могут быть такими: D =

{(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (1, 3)}. В такой выборке одному значению переменной x со-

ответствует несколько значений переменной y, как показано на рис. 1.
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Рис. 1. Пример выборки: зависимость объема продажи товара от цены.

Для нахождения функции регрессии f используются регрессионные модели.

Определение 3. Регрессионная модель — параметрические семейство функций, отобра-

жение

f : W× X → Y

декартова произведения области допустимых значений W параметров модели и области

допустимых значений X свободных переменных в область значения Y зависимой перемен-

ной. Иначе, регрессионная модель есть поэлементное отображение

f : (w,x) 7→ y,

в котором вектор параметров w ∈ W, свободная переменная x ∈ X и зависимая перемен-

ная y ∈ Y.

Синонимами термина «регрессионная модель» являются термины «теория», «гипотеза».

Эти термины используются в статистике, в частности в разделе «проверка статистических
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Рис. 2. Пример функции регрессии: зависимость цены товара от времени.

гипотез» [281, 324, 313]. Регрессионная модель есть гипотеза, которая должна быть подверг-

нута статистической проверке, после чего она принимается или отвергается при выполнении

процедуры выбора.

В дальнейшем предполагается, что выполнены следующие базовые условия:

1) функция f является непрерывной и гладкой по аргументу w,

2) множества W, X и Y являются подмножествами степеней декартовых произведений мно-

жества действительных чисел R× · · · × R.

Определение 4. Функция регрессии f ∗ — функция полученная путем сужения области

определения регрессионной модели f

f |W∋w=ŵ : X → Y

на заданное значение вектора параметров ŵ.

Далее для краткости регрессионная модель будет называться моделью, а функция ре-

грессии будет называться регрессией. В машинном обучении модель называют настроенной

или обученной, если зафиксированы её параметры.

Различают следующие виды регрессионных моделей:

1) линейные модели [271, 346] — модели, которые могут быть представлены в виде скаляр-

ного произведения вектора свободных переменных и вектора параметров модели

f = 〈w,x〉, (3)

в частности, линейными являются полиномиальные и криволинейные модели;

2) обобщенно-линейные модели [306, 180, 229, 284, 280, 227] — модели вида

f = µ−1〈w,x〉, (4)

где функция µ, называющаяся функцией связи, принадлежит множеству функций, за-

данному гипотезой о том, что распределение зависимой переменной принадлежит экспо-

ненциальному семейству, см. раздел 1.2.;
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3) нелинейные модели [347] — модели вида

f = f(w,x), (5)

которые не могут быть представлены как линейные (3) или обобщенно-линейные (4).

Различают одномерную и многомерную регрессию с одной и с несколькими свободны-

ми переменными. Будем считать, что свободная переменная — вектор x ∈ Rn. В част-

ных случаях, когда свободная переменная является скаляром, она будет обозначаться ξ.

На рис. 2 показана функция регрессии f(ŵ, ξ) = w1 + w2ξ
2 + ε(ξ). Ее оптимальные пара-

метры ŵ = [0.2839, 0.2412]. Соответствующая регрессионная модель имеет вид f = xTw, где

x1 = ξ0, x2 = ξ2.

1.2. Гипотеза порождения данных

Так как переменная y рассматривается в регрессионном анализе как случайная величина,

то при восстановлении функции регрессии f ∗ и параметров w регрессионной модели f(w,x)

используются вероятностные гипотезы.

Определение 5. Гипотезой порождения данных называется предположение о виде распре-

деления случайной величины y и значених параметров этого распределения (если распреде-

ление параметрическое).

Эта гипотеза играет центральную роль в выборе критерия оценки качества модели и, как

следствие, в методе оценки параметров модели. Для подтверждения или опровержения этой

гипотезы выполняются статистические тесты, называемые анализом регрессионных остат-

ков [124, 281, 324, 313]. При этом считается, что независимая переменная x не является слу-

чайной величиной, не содержит ошибок и не нуждается в дополнительных статистических

гипотезах.
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Так как дисперсия и математическое ожидание зависимой переменной y зависит от реали-

заций x1, . . . ,xm свободной переменной x, будем считать реализации зависимой переменной y

многомерной случайной величиной y = [y1, . . . , ym]
T. В регрессионных задачах рассматрива-

ются две основные многомерные случайные величины: зависимая переменная y и вектор

параметров w.

Многомерная случайная величина — упорядоченный набор (вектор) y = [y1, . . . , ym]
T фик-

сированного числа m одномерных случайных величин. Многомерное наблюдение ȳ — реали-

зация многомерной случайной величины y. Многомерная выборка Ȳ = [ȳ1, . . . , ȳn] — неупоря-

доченный набор фиксированного числа n многомерных наблюдений. Основными числовыми

характеристиками многомерной случайной величины являются вектор средних и ковариа-

ционная матрица.

Вектор средних — вектор математических ожиданий многомерной случайной величины,

E(y) = [E(y1), . . . ,E(ym)]
T. Оценкой вектора средних по многомерной выборке Y, если верна

гипотеза нормального распределения y, является среднее значение её реализаций,

E(y) = f(w,Y) =
1

n

∑

j∈{1,...,n}
ȳj,

иначе — среднее значение по строкам матрицы Y. При этом каждый элемент вектора пара-

метров w равен 1
n
, где n — число реализаций.

В качестве примера получения многомерной выборки по наблюдениям зависимой пере-

менной можно привести восстановление регрессии непараметрическими методами в задачах

прогнозирования временных рядов. При этом каждая строка матрицы Y содержит значения

временного ряда в окрестности, заданной независимой переменной — временем.

Пусть элементы многомерной случайной величины y имеют конечные дисперсии. Кова-

риационной матрицей величины y называется квадратная матрица

Σ = [σ2
ij ], i, j ∈ I,

элементы которой σ2
ij = cov(yi, yj) = E

(
(yi − Eyi)(yj − Eyj)

)
— ковариации случайных вели-

чин yi и yj. На главной диагонали матрицы находятся дисперсии σii случайных величин yi.

Оценкой Σ̂ ковариационной матрицы по многомерной выборке Y является

Σ̂ = (m− 1)−1ȲTȲ,

где Ȳ обозначает центрированность столбцов матрицы Y. Ковариационная матрица симмет-

рична и неотрицательно определена,

Σ = ΣT, yTΣy > 0, y ∈ Rm.

В дальнейшем рассматриваются три варианта описания многомерных случайных вели-

чин y и w посредством ковариационных матриц. При этом используется матрица B, обратная

к ковариационной матрице величины y,

B−1 = Σ.
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Ниже во всех примерах предполагается нормальное распределение N (·, ·) соответствующих

многомерных случайных величин.

Для зависимой переменной y выполняется один из трех вариантов гипотезы порождения

данных:

1) элементы зависимой переменной, случайной величины y, имеют одинаковую диспер-

сию σ2(y) и независимы, cov(yi, yj) = 0, i, j ∈ I, i 6= j,

y ∼ N (f , σ2(y)I)
def
= N (f , β−1I); (6)

2) элементы переменной y имеют различную дисперсию и независимы, то есть,

y ∼ N (f , diag−1(β1, . . . , βm)I); (7)

3) элементы переменной y описываются ковариационной матрицей общего вида,

y ∼ N (f ,B−1). (8)

В выражениях (3), (4) и (5) переменные y и w связаны функциональной зависимостью.

Поэтому параметры модели f также являются случайными величинами. Распределение этих

параметров зависит от гипотезы порождения данных. При заданной линейной модели

E(y|X) = f(w,X) = Xw,

либо при заданном линеаризованном виде

E(y − f |X) = f(w,X) = J∆w,

в котором матрица J есть матрица Якоби функции f , линейное отображение задаваемое

матрицей X, переводит распределение многомерной случайной величины y в распределе-

ние многомерной случайной величины w. В случае нормального распределения случайной

величины y распределение величины w также является нормальным. Обозначим A−1 кова-

риационную матрицу параметров w.

Как и для зависимой переменной y, для параметров w выполняется один из трех вари-

антов:

1) параметры имеют одинаковую дисперсию σ2(w) и независимы, cov(wj, wk) = 0, j, k ∈
J , j 6= k,

w ∼ N (wML, σ
2(w)I)

def
= N (0, α−1I); (9)

2) параметры модели имеют различную дисперсию и независимы,

w ∼ N (wML, diag−1(α1, . . . , αn)I); (10)

3) параметры модели описываются ковариационной матрицей общего вида

w ∼ N (wML,A
−1). (11)
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Таблица 1. Варианты гипотезы порождения зависимой переменной и параметров модели.

Зависимая переменная y Параметры модели w Обозначения

1) y ∼ N (f , σ2(y)I)
def
=N (f , β−1I) w ∼ N (w0, σ

2(w)I)
def
=N (0, α−1I) A = αI

2) y ∼ N (f , diag−1(β1, . . . , βm)I) w ∼ N (w0, diag−1(α1, . . . , αn)I) A = diag(αi)I

3) y ∼ N (f ,B−1) w ∼ N (w0,A
−1) A ∈ Mn

Определение 6. Параметры αj, j ∈ J распределения параметров w модели f(w,x) на-

зываются гиперпараметрами. Ковариационная матрица A = [αkj] называется матрицей

гиперпараметров.

Для гипотез (9), (10) и (11) матрица гиперпараметров имеет, соответственно, вид

1) A = αI,

2) A = diag(α1, . . . , αn)I,

3) A.

Аналогично, назовем гиперпараметрами и обозначим βi, i ∈ I параметры распределения

зависимой переменной y.

Варианты гипотезы порождения данных. Считаем вектор зависимых переменных y и

вектор параметров w многомерными нормально распределенными случайными величинами

с ковариационными матрицами A−1 и B−1 соответственно. Чтобы получить оценки гипер-

параметров A,B,w, введем ограничения на вид распределений p(D|w,B) и p(w|A). Для

зависимой переменной y и для параметров w выполняется один из трех вариантов гипотезы

порождения данных, продемонстрированных в таблице 1. Рассматриваются матрицы A и B

скалярного, диагонального и полного вида, независимо друг от друга. Предложенные ниже

методы позволяют решить задачу для случая матрицы B скалярного вида, т.е. B = βI. При

этом рассматриваются различные виды матрицы A.

1.2.1. Дополнительные требования к данным

При решении задач, к исходной выборке могут быть выдвинуты требования, связанные с

природой измерения величин. При этом рекомендуется привести значения переменных к еди-

ной шкале с целью исключением шкалы и единицы измерения из дальнейшего рассмотре-

ния [378].

Стандартизация данных. Выборка D стандартизируется таким образом, чтобы выпол-

нялись условия нормированности и центрированности признаков — столбцов χ матрицы

плана X, а также условие центрированности вектора y:

∑

i∈I
xij = 0,

∑

i∈I
x2ij = 1,

∑

i∈I
yi = 0, j ∈ J , (12)
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Таблица 2. Канонические функции связи.

Распределение Функция связи Вид функции

Нормальное Тождественная µ = Xw

Экспоненциальное, гам-

ма

Мультипликативная

обратная

µ = (Xw)−1

Обратное нормальное Обратная квадратичная µ = (Xw)−
1

2

Пуассоновское Логарифмическая µ = exp(Xw)

Биномиальное, мульти-

номиальное

Логит-функция µ =
(
1 + exp(−Xw)

)−1

или, в векторных обозначениях,

‖χj‖1 = 0, ‖χj‖2 = 1, ‖y‖1 = 0.

Предполагается, что векторы χj ,χk линейно независимы для всех значений j, k ∈ J , j 6= k.

Линейно зависимые векторы исключаются из дальнейшего рассмотрения.

Разбиение скользящего контроля. Дополнительно может быть задано разбиение мно-

жества индексов I = L⊔C элементов выборки D на обучающее и контрольное подмножества.

Для каждой выборки, рассматриваемой при решении задач регрессионного анализа, наборы

индексов L, C определены до начала эксперимента.

1.2.2. Экспоненциальное семейство

Далее предполагается, что распределение зависимой переменной принадлежит экспонен-

циальному семейству. Экспоненциальное семейство распределений [141] многомерной слу-

чайной величины y с вектором параметров η задается набором распределений вида

p(y|η) = h(y)g(η) exp (ηTu(y)) . (13)

Вектор η называется вектором естественных параметров распределения. Сомножи-

тель u(y) — некоторая вектор-функция многомерной случайной величины y.

Гипотеза принадлежности распределения зависимой переменной экспоненциальному се-

мейству используется при построении обобщенных линейных моделей (4), то есть, моделей

вида

E(y) = µ(Xw), (14)

для которых µ — функция связи, а Xw — линейная комбинация признаков выборки. Кано-

нические функции связи, соответствующие частным случаям экспоненциального семейства,

представлены в таблице 2.

В [88, 280] показано, что из гипотезы о принадлежности распределения p(y) зависимой

переменной y каноническому экспоненциальному семейству, при использовании соответству-

ющей этому распределению функции связи µ, следует, что параметры w ∼ N (ŵ,A−1)

обобщенно-линейной модели распределены нормально.
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При решении прикладных задач наибольший интерес представляют два распределения

этого семейства: нормальное и биномиальное [171, 284]. Первое используется в задачах вос-

становления регрессии, когда зависимая переменная принимает значения из множества R,

второе используется в задачах классификации, когда зависимая переменная принимает зна-

чения из множества {0, 1}.

1.2.3. Нормальное распределение зависимой переменной

Рассмотрим нормальное распределение зависимой переменной в качестве гипотезы по-

рождения данных при восстановлении линейной или существенно-нелинейной регрессии:

E(y|x) = f(w,x).

Для нахождения наиболее правдоподобных параметров модели используем метод наибольше-

го правдоподобия [278, 277, 225]. Пусть многомерная случайная величина y ∼ N (f ,B) имеет

нормальное распределение

p(y) =
1

(2π)
2

m det
1

2 (B−1)
exp

(

−1

2
(y − f)TB(y− f)

)

. (15)

В выражении (15) часть под экспонентой (y − f)TB(y − f) является квадратом расстоя-

ния Махаланобиса[298]. Матрицу можно представить в виде разложения Холецкого [214],

B = LLT, где L — диагональная нижнетреугольная матрица, либо в виде произведе-

ния B = UTU, см. [68]. Оба разложения единственны. В общем случае не предполагается, что

её элементы независимы и не коррелируют. Ковариационная матрица B является симмет-

ричной неотрицательно определенной матрицей. Диагональные элементы βi этой матрицы

являются обратны значениям дисперсии элементов случайной величины y:

σ2
i =

1

βi
, i ∈ I.

Так как правая часть выражения (15) зависит от вида регрессионной модели f , вектора

параметров w, независимой переменной x и от ковариационной матрицы B, перепишем его

в виде

p(y|x,w,B, f) def
= p(D|w, β, f) = exp(−ED)

ZD(β)
, (16)

где ZD — нормирующий коэффициент для плотности нормального распределения

ZD = (2π)
m
2 det

1

2 (B−1). (17)

Функция ошибки, соответствующая матожиданию регрессионной модели при данной гипо-

тезе, определена как

ED =
1

2
(y − f)TB(y − f). (18)

Рассмотрим частный случай гипотезы порождения данных: элементы вектора y не корре-

лируют и имеют одинаковую дисперсию, то есть обратная ковариационная матрица B = βIm.

В этом случае вид функции правдоподобия (16) упрощается: коэффициент ZD имеет вид

ZD(β) =

(
2π

β

)m
2

,
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так как

ZD(β) = det
1

2 (σ2I)(2π)
m
2 = σ

2m
2 det

1

2 (I)(2π)
m
2 = σm(2π)

1

2 =

(
2π

β

)m
2

,

a функция ошибки равна

ED =
1

2
β
∑

i∈I
(yi − f(w,xi))

2 ,

так как при

(σ2I)−1 =
I

σ2
= βI

справедливо выражение

ED =
1

2
(y − f)T(βI)(y− f) =

1

2
β‖y− f‖2.

Рассмотрим вектор параметров w модели f — многомерную случайную величину. Соглас-

но принятой гипотезе распределения (15) зависимой переменной и теореме о функциях связи

распределений [88, 280], распределение параметров w ∼ N (wML,A
−1) является нормальным

с матожиданием wML, ковариационной матрицей A−1 и имеет вид

p(w|A, f) = exp(−Ew)

Zw(A)
. (19)

Выражение (19) справедливо для линейных моделей, поскольку многомерные случайные

величины y и w связаны линейным отображением X. Для существенно нелинейных моделей

предполагается, что это выражение будет справедливо в окрестности ∆w некоторой точки w0

при линеаризации

y − f(ŵ,X) = J∆w.

Матрица Якоби J — это матрица частных производных модели f по элементам wj вектора

параметров w:

J =

[
∂f(w,xi)

∂wj

]

, где w = [w1, . . . , wj, . . . , wn]
T и i ∈ I, j ∈ J .

Это предположение используется, например, в аппроксимации Лапласа [294, 394], согласно

которой функция распределения параметров существенно нелинейной модели может быть

приближена функций нормального распределения.

Нормирующий коэффициент Zw(A) равен

Zw(A) = (2π)
n
2 det

1

2 (A−1), (20)

где n — число параметров модели f . Функция-штраф за большое значение параметров мо-

дели для принятого распределения определена как

Ew =
1

2
(w−w0)

TA(w−w0). (21)

Рассмотрим частный случай: дисперсии элементов wj вектора параметров w равны, об-

ратная ковариационная матрица имеет вид A = αIn. В этом случае выражения (20) и (21)

будут иметь вид

Zw(α) =

(
2π

α

)n
2

и Ew =
1

2
α‖ŵ−w‖2.
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Для нахождения наиболее вероятных параметров модели f(w,x) используем Байесов-

ский вывод [146, 254, 244]. При заданной модели f и заданных значениях A и B выраже-

ние (16) принимает вид

p(w|D,A,B, f) = p(D|w,B, f)p(w|A, f)
p(D|A,B, f) . (22)

Элементы этого выражения и соответствующие им параметры:

p(w|D,A,B, f) — апостериорное распределение параметров,

wMP = argmax p(w|D,A,B, f) — наиболее вероятные параметры,

wML = argmax p(D|w,B, f) — наиболее правдоподобные параметры,

p(D|w,B, f) — функция правдоподобия данных,

p(w|A, f) — априорное распределение параметров,

p(D|A,B, f) — функция правдоподобия модели f .

Записывая функцию ошибки S = Ew + ED в виде

S(w) =
1

2
(w−wML)

TA(w−wML) +
1

2
(y − f)TB(y− f), (23)

получаем вместо (22) выражение

p(w|D,A,B, f) = exp
(
−S(w)

)

ZS
,

где ZS — нормирующий коэффициент.

Заметим, что матожидание вектора параметров в некоторых случаях может быть ги-

потетически принято равным нулю, ŵ = 0. Такое предположение явно или неявно прини-

мается при решении задач выбора признаков линейных регрессионных моделей, см. Лас-

со [384], Stagewise [232], LARS [184], а также при прореживании некоторых нелинейных мо-

делей [231, 279].

При рассмотрении частных случаев ковариационных матриц A = αIn и B = βIm, пара-

метров модели w и гомоскедастичной зависимой переменной y выражение (22) принимает

вид

p(w|D, α, β, f) = p(D|w, β, f)p(w|α, f)
p(D|α, β, f) .

a функция ошибки —

S(w) =
1

2
α‖w‖2 + 1

2
β‖y− f‖2.

Параметры α и β в последнем выражении играют роль регуляризирующих множителей [152,

382].
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1.2.4. Биномиальное распределение зависимой переменной

В данной работе задача классификации рассматривается как задача логистической ре-

грессии [266, 243, 280], тo есть, как частный случай задачи восстановления регрессии (1).

В данном случае регрессия и классификация различаются не более чем предположением о

распределении зависимой переменной y. При этом принимается гипотеза о биномиальном

распределении зависимой переменной y ∈ {0, 1}:

y ∼ B(P, 1− P ), (24)

случайная величина y принимает значение 0 c вероятностью P и значение 1 с вероятно-

стью 1−P . Таким образом, функция регрессии f(ŵ,x) в случае биномиального распределе-

ния зависимой переменной восстанавливает регрессию, равную вероятности принадлежности

вектора x к одному из двух классов. Функция правдоподобия реализаций многомерной слу-

чайной величины y имеет вид

p(y|w) =

m∏

i=1

f(w,xi)
yi
(
1− f(w,xi)

)1−yi . (25)

Модель логистической регрессии имеет вид

f(w,X) = σ(−Xw) =
1

1 + exp(−Xw)
. (26)
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Рис. 4. Логистическая регрессия от двух переменных.

Выражение (25) при гипотезе (24) имеет вид

ED(w) = −
m∑

i=1

(
yi ln f(w,xi) + (1− yi) ln(1− f(w,xi))

)
, (27)

а производная этой функции по параметрам равна

∇ED(w) =

m∑

i=1

(f(w,xi)− yi)xi.
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где σ(X,w) — сигмоидная функция. Перепишем функцию ошибки общего вида (23) для

гипотезы (25) в виде

S(w) =
1

2
(w −wML)

TA(w−wML)−
m∑

i=1

(
yi ln f(w,xi) + (1− yi) ln(1− f(w,xi))

)
.

На рисунке 4 синими и красными точками показана выборка, состоящая из двух классов.

Восстановленная регрессия показана поверхностью f(ŵ,x), значение которой равно веро-

ятности принадлежности элемента выборки x к одному из двух классов. Прогнозируемая

принадлежность показана окружностями. При несовпадении цветов точки и окружности

следует говорить об ошибке классификации.

1.2.5. Функция ошибки и гипотеза порождения данных

Задача восстановления регрессии есть задача нахождения условного матожидания. Для

оценки качества решения этой задачи вводится функция ошибки, исходя из значения которой

делается вывод о том, насколько хорошо модель приближает данные, а также насколько

адекватна гипотеза порождения данных [182, 2, 55, 233].

Определение 7. Функция ошибки S(w) — функция, значение которой требуется мини-

мизировать для получения оценок параметров w модели f , удовлетворяющих заданным

требованиям.

Например, это одно из следующих требований:

требование максимизации правдоподобия данных,

требование максимизации вероятности параметров модели,

требование максимизации правдоподобия самой регрессионной модели,

требования состоятельности, несмещенности оценки параметров,

либо другие требования, определяемые решаемой задачей восстановления регрессии.

Функция ошибки назначается одним из двух способов:

1) путем байесовского вывода, тогда она определяется гипотезой порождения данных и, оп-

ционально, принятой регрессионной моделью (выше приведены примеры (23) и (27) для

гипотез нормального и биномиального распределения зависимой переменной);

2) другим путем, который учитывает особенности постановки решаемой прикладной задачи.

Во втором случае несмещенность и другие статистические свойства полученных оценок па-

раметров не исследуются. В качестве примера приведем функции ошибки, обеспечивающие

выполнение требований промышленных стандартов [99] и требований к минимизации потерь

при совершении торговых операций [5]. В первом примере симметричная функция ошибки

имеет вид

S(w) =
∑

i∈I
‖f(w,xi)− yi‖1. (28)
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Во втором примере несимметричная функция ошибки, являющаяся кусочно-линейной функ-

цией, имеет вид

S(w) =
∑

i∈I

∑

s

{

as + bs(f(w,xi)− yi), при f ∈ (zs−1, zs);

0, в противном случае.
(29)

Параметры as, bs и концы отрезков zs выбираются согласно расчетам убытков при совер-

шении торговых операций при условии непрерывности функции ошибки и её первой про-

изводной. В обоих случаях происходит отказ от принятия гипотезы порождения данных,

и функция ошибки S(w) оптимизируется, исходя из условий поставленной задачи. Напри-

мер, при восстановлении регрессии измерений некоторых физических величин используется

метод наименьших модулей [24, 85, 78], согласно которому функция ошибки задана как сум-

ма модулей регрессионных остатков. Задача нахождения минимального значения функций

вида (28) или (29) решается методами линейного программирования. В таблице 3 приведен

набор функций ошибок, часто используемых при решении задач прогнозирования.

Таблица 3. Функции ошибок регрессионных моделей.

Среднее арифметическое модулей остатков MAE = 1
m

m∑

i=1

|εi|

Среднее арифметическое модулей относительных

остатков

MAPE = 1
m

m∑

i=1

| εi
yi
|

Среднее отклонение модулей остатков PMAD =
m∑

i=1

|εi| (
∑m

i=1 |yi|)
−1

Среднеквадратичная ошибка MSE = 1
m

m∑

i=1

ε2i

Корень среднеквадратичной ошибки RMSE = 1√
m

√∑m
i=1 ε

2
i

Сила прогноза SS = 1− MSEforecast

MSEhistory

Функция ошибки и разбиение выборки. В данной работе не предполагается, что для

оценки наиболее вероятных параметров модели, либо для выбора наиболее правдоподобной

модели из некоторого множества требуется разбиение множества индексов I элементов вы-

борки D = {(xi, yi)}, i ∈ I на обучающую и контрольную: I = L ⊔ C. Тем не менее, следует

отметить, что при выборе моделей такое разбиение является одним из наиболее эффектив-

ных способов избежать переобучения, см. [91, 73, 295]. Поэтому ниже приведен ряд примеров

эвристических функций ошибок, предложенных авторами метода группового учета аргумен-

тов. Данные функции называются критериями. Значительная их часть опубликована на сай-

те [100].

Используемые в этом подразделе обозначения XC,yC,wL означают, что значения перемен-

ных X,y,w фиксированы, в выборку (XC,yC) вошли только объекты с индексами из мно-

жества C ∈ I 6= ∅, а оцека вектора параметров wL получена с использованием выборки,

состоящей из элементов с индексами из множества L ⊂ I 6= ∅:

wL = arg min
i∈L⊂I

S(w|XL,yL, f).
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При этом считается, что множество индексов I элементов выборки разбито на подмножества

I = L ⊔ C ⊔ V,

в котором L — обучающая выборка, C — котрольная выборка, V — валидационная выборка.

Последняя в ряде задач может быть пустой.

Метод группового учета аргументов [59, 14, 17] использует внутренний и внешний кри-

терий, так как при оценке параметров моделей и при выборе моделей используются разные

элементы выборки. Внутренний критерий используется для оценки параметров: их значе-

ния оцениваются на подвыборке элементов с индексами из L. Выбор моделей производится

с помощью внешнего критерия, значение которого вычисляется на множестве C. При выборе

минимум внешнего критерия означает, что модель, доставляющая такой минимум, является

искомой.
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Рис. 5. Внешний и внутренний критерии при различных значениях структурной сложности.

Критерий регулярности S∆2 равен норме разности вектора значений зависимой пере-

менной и вектора значений функции регрессии на тестовой подвыборке C при параметрах,

оцененных на обучающей подвыборке L.

S∆2
C
= ‖yC −XCwL‖2,

где

wL = (XT

LXL)
−1(XT

LyL).

Этот критерий может быть нормирован выражениями ‖yL‖2 или ‖yL − mean(yL)‖2.
Критерий предсказательной способности — модификация критерия регулярности для

задач прогнозирования. Этот критерий включает среднеквадратичную ошибку для вали-

дационной выборки V, которая не используется ни при оценке параметров, ни при выборе

модели. В этом случае выборка делится на три части. Критерий предсказательной способ-

ности имеет вид

S∆2
V
=

‖yI −XIwV‖2
‖yI − mean(yI)‖2

.
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Критерий минимального смещения или критерий непротиворечивости: модель, кото-

рая имеет на обучающей и на контрольной выборках различные векторы невязок, называется

противоречивой. Критерий задан разностью между значениями функции регрессии, вычис-

ленными на двух различных выборках, заданных множествами L и C и требует, чтобы оценки

параметров, вычисленные на этих выборках, различались минимально. Он имеет вид:

Sη2
bs
= ‖XIwC −XIwL‖2,

модификация:

Sη2a = ‖wC −wL‖2,

где wC и wL — векторы параметров, полученные с использованием подвыборок C и L.

Критерий иммунитета к шуму имеет вид

SV 2 =(XIwC −XIwI)
T(XIwI −XIwL) =

(wC −wI)
TXT

IXI(wI −wL),

где wI — вектор параметров, полученный с использованием полной выборке I. Утверждает-

ся [59], что с помощью этого критерия в сильно зашумленных данных можно найти скрытые

закономерности.

Комбинированный критерий позволяет использовать при выборе моделей линейную ком-

бинацию нескольких критериев. Комбинированный критерий

Sκ2 =

K∑

k=1

vkSk, при условии

K∑

k=1

vk = 1.

Здесь Sk — принятые на рассмотрение критерии, а vk — веса этих критериев, назначенные

в начале вычислительного эксперимента.

Используются также нормализованные значения критериев. При этом предыдущая фор-

мула имеет вид

Sκ2 =

K∑

i=1

vk
Sk

max
f∈F

(Sk)
.

Максимальное значение критерия max(Sk) берется по вычисленным значениям критери-

ев Sk(f) для всех порожденных моделей f ∈ F.

1.3. Задачи регрессионного анализа

Задача восстановления регрессии (1) имеет несколько разных постановок, каждую их

которых можно условно отнести к одному из следующих типов:

1) задачи оценки параметров модели,

2) задачи выбора признаков или объектов регрессионной выборки,

3) задачи выбора регрессионных моделей,

4) задачи проверки гипотезы порождения данных.
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Предполагается, что функция ошибки S(w) задана гипотезой порождения данных. При за-

дании функции ошибки используется байесовский вывод. Предполагается, что зависимая

переменная имеет распределение из экспоненциального семейства (13), например, нормаль-

ное (15) или биномиальное (24). В гипотезу также включены условия взаимозависимости

элементов целевого вектора y как многомерной случайной величины, например, условие го-

москедастичности (6), независимости (7) или гетероскедастичность (8) — как отсутствие этих

условий.

Функция ошибки может быть также определена исходя из постановки задачи, например,

в случаях (28) или (29), когда её вид определен задачей минимизации потерь.

1.3.1. Оценка параметров модели

Задача 1. Задана выборка D = {(xi, yi)}, i ∈ I, функция ошибки модели S и модель — па-

раметрическое семейство функций f(w,x). Требуется найти такие параметры w модели,

которые бы доставляли минимум функции ошибки

w∗ = arg min
w∈W

S(w|D, f). (30)

В выражении (30) справа от вертикальной черты указаны фиксированные значения пе-

ременных, что читается: «при заданной выборке D и модели f», аналогично обозначению,

принятому для записи условной вероятности. Далее предполагается, что запись S(w) экива-

лентна записи S(w|D, f), если специально не оговорено иное.

Например, задан критерий качества линейной регрессионной модели при предположени-

ях (15) и (6). Также предполагается, что выполнены условия (37). Требуется найти пара-

метры — весовые коэффициенты, доставляющие минимальное значение функции ошибки —

квадрату евклидовой нормы вектора невязок S(w) =
∑

i∈I
(
yi − f(w,xi)

)2 → min. Ряд при-

меров, где f — фиксированная нелинейная регрессионная модель рассмотрен в [347].

Функция ошибки, определенная посредством логарифмической функции правдоподобия,

как в (16) и (17),

S(w) = ED = − ln
(
p(D|w,B, f)

)
,

обеспечивает максимизацию правдоподобия параметров. Параметры, найденные минимиза-

цией этой функции ошибок, называются наиболее правдоподобными, а задача (30) имеет

вид

wML = arg min
w∈W

S(w|D,B, f).

Параметры, найденные минимизацией функции ошибок, заданной апостериорным рас-

пределением (22), называются наиболее вероятными, а задача (30) имеет вид

wMP = arg min
w∈W

S(w|D,A,B, f).

При этом предполагается, что обратные ковариационные матрицы A,B заданы, или оцени-

вание уже выполнено.
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1.3.2. Выбор оптимальной модели

Для выбора модели из некоторого множества допустимых моделей требуется ввести по-

нятие сложности модели [220]. Различают следующие типы сложности:

1) обобщающая способность модели, оцениваемую с использованием скользящего контро-

ля [295];

2) статистическая сложность модели, например, Mallow’s Cp [300], AIC [117], BIC [145]

3) минимальная длина описания модели, оцениваемая с использованием оценок правдопо-

добия модели [379, 381],

4) структурная сложность модели [390, 389, 208], зависящая от вида суперпозиции элемен-

тарных функций, которые задают модель.

Связано это с тем, что при выборе модели без учета сложности [383], будет выбрана наи-

более сложная модель. Поставим задачу выбора моделей для случая обобщенно-линейных

моделей. При этом число параметров и число признаков модели будут равны (равенство чис-

ла признаков и параметров может не быть в случае нелинейных моделей). Задача выбора

модели тогда сводится к выбору признаков, то есть к поиску такого множества индексов

признаков A ⊆ J , которое доставит оптимальное значение критерию сложности модели.

При использовании скользящего контроля, критерии которого описаны в предыдущем

разделе, задача выбора модели ставится следующим образом.

Задача 2. Задана выборка D = {(xi, yi)}, i ∈ I, где множество векторов свободных пе-

ременных {x = [x1, . . . , xj, . . . , xn]}, проиндексировано j ∈ J = {1, . . . , n}. Задано разбиение

скользящего контроля множества индексов элементов выборки I = L ⊔ C. Задана функ-

ция ошибки S и модель — параметрическое семейство функций f(w,x) = µ(wTx), где µ —

функция связи (14). Требуется найти такое подмножество индексов A ⊆ J , которое бы

доставляло минимум функции:

A∗ = arg min
A⊆J

S(fA|ŵ,DC) (31)

на подмножестве DC разбиении выборки D, определенном множеством индексов C. При

этом параметры ŵ модели должны доставлять минимум функции:

ŵ = arg min
w∈W

S(w|DL, fA) (32)

на подмножестве DL разбиении выборки, определенном множеством индексов L. Здесь fA
обозначает обобщенно-линейную модель f = µ(wT

AxA), включающую только столбцы мат-

рицы X с индексами из множества A.

Нелинейная модель не может быть однозначно задана множеством A активных призна-

ков. Поэтому для задания модели используются правила индуктивного порождения моделей

детально определенные в следующем разделе. Они позволяют однозначно индексировать

модели f из множества моделей F .
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Задача 3. Задана выборка D = {(xi, yi)} и разбиение скользящего контроля i ∈ I = L ⊔ C.

Задано множество порождающих функций G = {g1, . . . , gn}. Заданы правила индуктивного

порождения множества моделей F = {fr}, индексированных счетным множеством R ∋ r.

Требуется найти такую модель fr̂, которая бы доставляла минимум функции

r̂ = argmin
r∈R

S(fr|ŵ,DC) (33)

при условии оценки оптимальных параметров ŵ решением задачи (32).

1.3.3. Оценка ковариационных матриц зависимой переменной и параметров

Задача 4. Задана выборка D, гипотеза порождения данных H, соответствующая ей функ-

ция ошибки S(w) и модель f(w,x). Задан вектор ŵ оптимальных параметров модели.

Требуется оценить обратные ковариационные матрицы A,B для случаев (6)–(11), макси-

мизируя правдоподобие модели:

(Â, B̂) = argmax
A∈Rn2 ,B∈Rm2

∫

p(D|w,B, f)p(w|A, f)dw.

1.3.4. Совместный выбор объектов и признаков в обобщенно-линейных

моделях

Обобщенно-линейная модель f однозначно задается активным множеством индексов при-

знаков A ⊆ J . Функция связи задана гипотезой порождения данных. Предполагая частич-

ную гомоскедастичность выборки (например, среди объектов встречаются выбросы, которые

должны быть исключены из рассмотрения), зададим «фильтрованную» выборку (другими

словами — активное множество объектов) индексами из множества B ⊆ I. Обозначим мно-

жество векторов {xi|i ∈ B} как xB. Задача выбора модели имеет вид

(Â, B̂) = argmax
A⊆J ,B⊆I

E
(
fA(w,xB)

)
, (34)

где функция правдоподобия модели равна интегралу по пространству её параметров

E(f |D) =

∫

w∈Rn

p(D|w, B̂, fA)p(w|Â, f)dw. (35)

Подынтегральное произведение включает функцию правдоподобия данных и априорное рас-

пределение параметров модели.

1.3.5. Выбор наиболее правдоподобной модели

Обобщим предыдущую задачу на случай существенно нелинейных моделей. При этом для

простоты будем считать, что элементы-выбросы уже исключены из регрессионной выборки,

то есть, I = B. Тогда задача выбора правдоподобной модели fr c индексом r из множества

моделей-претендентов F имеет следующий вид.
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Задача 5. Задана выборка D = {(xi, yi)}, i ∈ I. Задано множество моделей F = {fr}, ин-

дексированных счетным множеством R ∋ r. Требуется выбрать наиболее правдоподобную

модель

r̂ = argmax
r∈R

p(fr|D) = argmax
r∈R

∫

w∈W

p(D|w, B̂, fr)p(w|D, Â, fr)dw

Заметим, что оценивать параметры модели для того, чтобы выбрать наиболее правдопо-

добную модель, необязательно.

При предположении о равенстве априорных вероятностей моделей:

p(fi) = p(fj), i, j ∈ R, и
∑

i∈R
p(fi) = 1,

задача выбора наиболее правдоподобной модели становится эквивалентной задаче выбора

наиболее вероятной модели. Задача оценивания апостериорного распределения или априор-

ной функции вероятности моделей в данной работе не рассматривается.

1.3.6. Выбор смеси моделей

В случае, когда невозможно получить адекватную функцию регрессии в связи со сложно-

стью регрессионной выборки, решается задача восстановления регрессии с помощью несколь-

ких регрессионных моделей. При этом некоторому элементу выборки может быть поставлена

в соответствие либо одна, либо несколько моделей.

Определение 8. Многоуровневой моделью f называется набор моделей f = {fk(wk,xBk
)|f ∈

F}, k = 1, . . . , K, такой, что

fk : Wk × XBk
→ YBk

,

при разбиении

I = ⊔
k∈{1,...,K}

Bk.

Задача 6. Задана выборка D, гипотеза порождения данных H, набор моделей F ∋ fk и рас-

пределения p(D|w,B, fk), p(w|A, fk). Требуется найти разбиение I = ⊔
k∈{1,...,K}

Bk, которое

доставляло бы максимум произведению функций правдоподобия соответствующих моде-

лей:

(B̂1, . . . , B̂K) = argmax
B1⊔···⊔BK=I

∏

k∈{1,...,K}
E(fk|D).

Правдоподобие модели определено в (35).

Частным случаем задачи разбиения выборки на несколько подмножеств является задача

выбора опорных объектов [355]. При постановке этой задачи множество индексов разби-

вается на два подмножества, B1 ⊔ B0 = I, причем модель определяется только на выборке

c индексами объектов B1. Эти объекты считаются опорными. Объекты с индексами B0 при

решении задачи не рассматриваются.
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1.3.7. Нахождение инвариантов моделей

Данная задача возникает при прогнозировании квазипериодических временных рядов.

При нахождении многоуровневой модели может возникнуть ситуация, когда две или несколь-

ко моделей оказываются «похожими». Предлагается сократить число моделей за счет объ-

единения элементов выборки, которые к ним относятся, иначе — найти функцию h : i, j →
k, для некоторых i, j ∈ {1, . . . , K}, таких, что Bk = Bi∪Bj → B. В качестве функции рассто-

яния между моделями предлагается использовать расстояние Дженсена-Шеннона, вычисля-

мое как расстояние между апостериорными распределениями моделей.

Задача 7. Задано разбиение выборки I = B̂1 ⊔ · · · ⊔ B̂K. Требуется найти функцию, отоб-

ражающую {1, . . . , K} → {1, . . . , P}.

1.3.8. Проверка гипотезы порождения данных

Выше предполагалось, что гипотеза порождения данных определяет функцию ошибки и,

в конечном итоге, выбранную модель. Однако, после получения оптимальной модели необ-

ходимо выполнить анализ регрессионных остатков, целью которого является возможное от-

вержение принятой ранее гипотезы.

Задача 8. Заданы выборка D и функция регрессии f(ŵ,x), то есть, задан вектор регресси-

онных остатков ε = f−y. Задан набор гипотез порождения данных H = {H(θ)} — функций

распределения многомерной случайной величины y. Требуется оценить параметры каждой

функции распределения и выбрать наиболее адекватную гипотезу порождения данных.

Оценки параметров при выборе гипотезы порождения данных должны быть несмещен-

ные и состоятельные [155]. Оценка θ̂(x1, . . . , xn) параметра θ называется несмещенной, если

Eθ̂(X1, . . . ,Xn) = θ для всех θ ∈ Θ. Смещением называется разность

b(θ) = Eθ̂ − θ.

Оценка θ̂(x1, . . . , xn) параметра θ называется состоятельной, если для всех θ ∈ Θ последо-

вательность

θ̂n = θ̂(X1, . . . ,Xn)
P→θ при n→ ∞.

Символ
P→ означает сходимость по вероятности: для любого ǫ > 0 вероятность P (|θ̂n−θ| >

ǫ) → 0 при n→ ∞. Предлагаемый состав методов анализа регрессионных остатков приведен

ниже.

Математические объекты, упомянутые в вышеперечисленных задачах сведены в табли-

цу 4. Знак прочерка «–» означает, что соответствующий объект в задаче не используется,

либо вычисляется в ходе решения и используется как промежуточный результат.

1.4. Оценка параметров моделей

Оценка параметров моделей является одной из наиболее часто решаемых задач регрес-

сионного анализа. Способ получения оптимального решения w0 может определяться видом
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Таблица 4. Сводная таблица задач, решаемых при восстановлении регрессии.
Задача Модель f Параметры

w

Гиперпара-

метры A,B

Признаки

A
Объекты

B
1 Оценка параметров задана найти – заданы заданы

2 Выбор оптимальной моде-

ли

найти заданы – заданы заданы

3 Оценка ковариационных

матриц

задана – найти заданы заданы

4 Выбор объектов и призна-

ков

задана – заданы найти

подмно-

жество

найти

подмно-

жество

5 Выбор правдоподобной

модели

найти – заданы заданы заданы

6 Выбор смеси моделей задана – заданы заданы найти по-

крытие

7 Нахождение инвариантов задана – заданы заданы найти раз-

биение

8 Оценка мощности выборки задана заданы заданы заданы оценить

число

9 Проверка гипотезы порож-

дения данных

задана заданы – – заданы

оптимизируемой функции [156, 153, 342] ошибок S(w), но также решение может быть по-

лучено с помощью стохастических оптимизационных алгоритмов [400]. Последние называют

также алгоритмами глобальной оптимизации, и, как показано в [397, 395, 396], эти алго-

ритмы могут быть более эффективны, чем алгоритмы, использующие градиентный спуск,

особенно в случаях большого числа локальных экстремумов функции ошибки. На практике

применяется комбинация этих алгоритмов. Далее будут рассмотрены модификации таких

алгоритмов, как алгоритм Левенберга-Марквардта [282] и алгоритм регионов доверия [173].

1.4.1. Линейные модели

Нахождение параметров w линейной модели (3) при предположении о нормальном рас-

пределении (15) зависимой переменной y заключается в минимизации евклидовой нормы

вектора регрессионных остатков

S(w) = ‖y−Xw‖2 = ‖ε‖2. (36)

Предполагается выполнение следующих условий: (37)

1) независимые переменные x не являются случайными величинами,

2) математическое ожидание E(ε) = 0,

3) дисперсия D(ε) = σ2
εI (условие гомоскедастичности),

4) при i 6= k математическое ожидание E(εi, εk) = 0,

5) rank(X) = n 6 m.



40

Эти условия называются условиями Гаусса-Маркова [58]. При этом оценки параметров

модели (3) являются состоятельными и несмещенными. Оценки являются также эффектив-

ными, если ε ∼ N (0, σ2
εI).

Требуется минимизировать евклидово расстояние от вектора y до вектора Xw. Этот век-

тор лежит в пространстве столбцов матрицы X, так как Xw — это линейная комбинация

столбцов этой матрицы с коэффициентами w1, . . . , wn. Задача оценки w эквивалентна задаче

нахождения точки p = Xw, ближайшей к y и находящейся в пространстве столбцов матри-

цы X. Следовательно, вектор p должен быть проекцией y на пространство столбцов, вектор

регрессионных остатков Xw−y должен быть ортогонален этому пространству. Рассмотрим

произвольный вектор Xv, ортогональный вектору регрессионных остатков Xw− y:

(Xv)T(Xw− y) = vT(XTXw−XTy) = 0.

Так как это равенство должно быть справедливо для произвольного вектора v, то XTXw−
XTy = 0, см. рис. 6. Если столбцы матрицы X линейно независимы, то матрица XTX обра-

тима и уравнение имеет единственное решение относительно параметров

w = (XTX)−1XTy. (38)

Xv

p

y

Рис. 6. Проекция вектора зависимой переменной на пространство столбцов матрицы плана.

Проекция вектора y на пространство столбцов матрицы X имеет вид

p = Xw = X(XTX)−1XTy = Py.

Матрица P = X(XTX)−1XT называется матрицей проектирования. Она она идемпотентна,

P2 = P, и симметрична, PT = P.

Используемые здесь методы нахождения оптимальных параметров моделей предполагают

непрерывную дифферренцируемость функции S(w) в области W ∋ w. Согласно (36),

S(w) = (Xw− y)T(Xw− y) = yTy − 2yTXw +wTXTXw.

Для того, чтобы найти минимум этой функции, требуется приравнять её градиент к нулю:

∂S

∂w
= −2XTy + 2XTXw = 0.

Решение этого уравнения совпадает с решением (38).
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1.4.2. Существенно нелинейные модели

Для произвольной существенно нелинейной модели f(w,x) принята гипотеза (15) о нор-

мальности распределения зависимой случайной величины y. Требуется найти такое значение

вектора параметров w, которое бы доставляло локальный минимум функции S(w), заданной

выражением (36). Принятие этой функции ошибки обусловлено предположением о возмож-

ности такой линеаризации

y − f(w −w0,X) = J(w−w0)

существенно нелинейной модели f ,

J =

[
∂f(w,xi)

∂wj

]

, i ∈ I, j ∈ J , (39)

в окрестности вектора параметров w0, котоая удовлетворяла бы условиям (37).

Так как функция S(w) имеет локальный минимум, но в общем случае этот минимум

не является единственным [58, 63], то предлагается назначить начальное значение векто-

ра параметров w0, а затем найти последовательность приближений wk вектора параметров

к оптимальному вектору ŵ по шагам:

ŵ ≈ wk+1 = wk +∆wk.

Здесь индекс k вектора параметров обозначает номер итерации, ∆wk — вектор приращения,

разность векторов параметров на двух последовательных шагах.

Для оценки приращения ∆wk используется линейное приближение функции

f(wk+1,X) = f(wk,X) + J∆wk, (40)

где J — матрица Якоби (39) вектор-функции f(w,X) в точке wk.

Приращение ∆wk в точке w, доставляющее минимум S(w), равно нулю. Поэтому для

нахождения следующего значения приращения ∆w приравняем к нулю вектор частных про-

изводных S(w) по w. Для этого представим выражение (36) в виде

S(w) = ‖y − f(w +∆wk)‖2 = fT(w +∆wk,X)f(w +∆wk,X)− 2yTf(w +∆wk,X) + yTy

продифференцируем и приравняем к нулю:

∂S

∂wk

= (JTJ)∆w− JT
(
y − f(w,X)

)
= 0.

Таким образом, чтобы найти значение ∆wk, нужно решить систему линейных уравнений

∆wk = (JTJ)−1JT
(
y − f(wk,X)

)
. (41)

В том случае, когда функция ошибки S(w) задана как взвешенная сумма квадратов остатков,

S(w) =
(
y − f(w,X)

)
T

W
(
y − f(w,X)

)
,

где W — диагональная матрица с неотрицательными элементами на диагонали, уравне-

ние (41) будет иметь вид

∆wk = (JTWJ)TJTW
(
y − f(wk,X)

)
.
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Так как число обусловленности матрицы JTJ есть квадрат числа обусловленности мат-

рицы J, то матрица JTJ может оказаться существенно вырожденной. Проблема большого

числа обусловленности матрицы JTJ, возникающая при итеративном нахождении парамет-

ров существенно-нелинейных моделей, решается методами регуляризации [382, 16, 49, 107].

При этом вводится параметр регуляризации λ > 0:

∆w = (JTJ+ λI)−1JT
(
y − f(w)

)
.

Параметр λ назначается на каждой итерации алгоритма. Если значение ошибки S убывает

быстро, то можно выбрать близкое к нулю значение λ и свести этот алгоритм к алгоритму

Гаусса-Ньютона [282].

Итерации прекращаются в том случае, если приращение ∆w в последующей итерации

меньше заданного значения, либо если параметры w доставляют ошибку S(w), меньшую

заданной величины. Значение вектора w на последней итерации считается искомым.

Недостаток алгоритма — значительное увеличение параметра λ при плохой скорости схо-

димости. При этом обращение матрицы (JTJ + λI) сводится к обращению её второго сла-

гаемого. Этот недостаток можно устранить, используя диагональ матрицы JTJ в качестве

регуляризующего слагаемого:

∆w =
(
JTJ+ λdiag(JTJ)

)−1
JT
(
y − f(w)

)
. (42)

1.4.3. Оптимизация целевой функции общего вида

Приведем вариант алгоритма, описанного в предыдущем разделе, который минимизирует

не функцию ошибки (36), функцию ошибки (23) общего вида, которая включает матрицы

гиперпараметров A,B. Как и ранее, используем пошаговое линейное приближение (40), в ко-

тором строка матрицы Якоби Ji =
∂f(w,xi)
∂w

. Разложение целевой функции в ряд Тейлора имеет

вид

S(w +∆w) ≈ 1

2
(w +∆w)TA(w +∆w) +

1

2
(y − f(w,X)− J∆w)T

B (y − f(w,X)− J∆w) .

Отбросив члены второго порядка, получим:

S(w +∆w) ≈ 1

2
wTAw +wTA∆w + (y − f(w,X)− J∆w)T

B (y − f(w,X)− J∆w) .

Для нахождения минимума функции S(w +∆w) приравняем к нулю её градиент по ∆w:

∂S(w +∆w)

∂∆w
= wTA− βJT(y − f(w,x)− J∆w) = 0,

откуда получим решение нормального уравнения для функции ошибки общего вида

∆w = (JTJ)−1

(

JT
(
y − f(w,x)

)
− 1

β
A−1w

)

.

Так как число обусловленности матрицы (JTJ)−1 растет при приближении функции S(w)

к минимальному значению, как в случае (42) используем регуляризирующий параметр λ.

Сформулируем вышеприведенные результаты в виде теоремы.
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Теорема 1. Для гипотезы нормального распределения зависимой переменной при фиксиро-

ванных ковариационных матрицах A−1,B−1 итерационный алгоритм оценки параметров

∆wk+1 = (JTJ)−1

(

JT
(
y − f(w,X)

)
− 1

β
A−1wk

)

доставляет локальный минимум функции ошибки общего вида S(w|D,A,B, f) при сходи-

мости последовательности векторов wk.

Замечание 1. Итерационный алгоритм wk+1 = ∆wk+1 + wk предполагает известное на-

чальное приближение w0. Последовательность ‖wk+1 −wk‖2 монотонно убывает с увели-

чением номера шага k.

1.4.4. Оценка параметров функции ошибки общего вида методом

сопряженных градиентов

Если известны значения гиперпараметров A,B для нелинейной регрессионной модели, то

можно использовать алгоритм Левенберга-Марквардта для оценки вектора параметров мо-

дели w. Пусть задано некоторое приближение для значений параметров модели w. Функция

ошибки имеет вид:

S =
1

2
(w +∆w)TA(w +∆w) +

1

2

(
X(w +∆w)− y

)
T

B
(
X(w +∆w)− y

)
. (43)

Для минимизации функции ошибки воспользуемся алгоритмом Левенберга-Марквардта,

который предназначен для оптимизации параметров нелинейных регрессионных моделей.

Алгоритм заключается в последовательном приближении заданных начальных значений па-

раметров к искомому локальному оптимуму и является обобщением метода сопряжённых

градиентов и алгоритма Ньютона-Гаусса.

На первой итерации алгоритма задаётся начальное приближение для w. Приращение

∆w в точке оптимума для функции ошибки (43) равно нулю. Поэтому для нахождения

экстремума приравняем вектор частных производных S по w к нулю. Для этого представим

S в виде двух слагаемых:

S1 =
1

2
(w +∆w)TA(w +∆w), (44)

S2 =
1

2

(
X(w +∆w)− y

)T
B
(
X(w +∆w)− y

)
. (45)

После дифференцирования получим следующие выражения:

∂S1

∂w
=

1

2
(w +∆w)T(A+AT),

∂S2

∂w
=

1

2

[(
X(w +∆w)− y

)
T

BTX+
(
X(w +∆w)− y

)
T

BX
]
.

Таким образом, чтобы найти приращение ∆w необходимо решить систему линейных урав-

нений:

∇S =
1

2
(w +∆w)T(A+AT) +

1

2

[(
X(w +∆w)− y

)
T

BTX+
(
X(w +∆w)− y

)
T

BX
]
= 0,

∆w =
[(
A+AT +XT(BT +B)X

)−1]T(−wT(A+AT) + (y −Xw)T(BT +B)X
)

T

.
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Так как матрицы A, B — симметричные, положительно определенные матрицы ковариации,

то эта система эквивалентна:

∆w =
[(
A+XTBX

)−1]T(−wTA+ (y −Xw)TBX
)

T

.

То есть,

∆w = (XTBX+A)−1
XTBTy −w.

Вышеописанная процедура останавливается, в том случае, если приращение ∆w в после-

дующей итерации меньше заданного значения, либо если параметры w доставляют ошибку

S меньшую заданной величины. Значение вектора w на последней итерации считается иско-

мым.

1.4.5. Обобщенно-линейные модели

Пусть целевая функция S(w) задана в виде (27), согласно гипотезе (24). Используя метод

Ньютона-Рафсона [196], рассмотрим (k + 1)-й шаг минимизации целевой функции S(w)

wk+1 = wk −H−1∇S(w), (46)

где H — матрица Гессе, элементы которой являются вторыми производными целевой функ-

ции по параметрам модели

H =

[
∂2S(w)

∂wi∂wj

]

, i, j ∈ J .

Применим этот метод к модели линейной регрессии (3) считая, зависимая переменная y

является нормально распределенной многомерной случайной величиной (15). Тогда первые

и вторые производные функции ошибки S(w) будут иметь вид

∇S(w) =
∂S(w)

∂w
= XTXw−XTy =

m∑

i=1

(
wTxi − yi

)

и

H = ∇∇S(w) = XTX =
m∑

i=1

xix
T

i .

Перепишем (k + 1)-й шаг итерации (46) в виде

wk+1 = wk − (XTX)
−1

(XTXwk −XTy) = (XTX)
−1

XTy.

Полученное решение эквивалентно решению методом наименьших квадратов (38).

Применим этот метод, принимая гипотезу распределения данных (24) для модели логи-

стической регрессии (26). Дифференцируя однократно и двукратно функцию ошибки S(w)

по элементам вектора параметров w, получим её градиент

∇S(w) = XT(f(w,X)− y) =
m∑

i=1

(fi(w,xi)− yi)xi

и гессиан

H = ∇∇S(w) = XTBX =

m∑

i=1

f(w,xi)
(
1− f(w,xi)

)
xix

T

i .
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Рис. 7. Сходимость параметров логистической регрессионной модели.

В последнем выражении присутствует диагональная матрица весовых коэффициентов B =

diag[β1, . . . , βm] размера (m×m) с элементами

βi = f(w,xi)
(
1− f(w,xi)

)
.

Так как гессиан зависит в этом случае от матрицы B, элементы которой, в свою очередь, со-

держат параметры модели, то целевая функция S(w) не является теперь квадратичной. Так

как модель f(w,x) вида (26) принимает значения на интервале (0, 1), то для произвольного

вектора u справедливо неравенство

uTHu > 0.

Следовательно, целевая функция S является выпуклой функцией аргумента w и имеет един-

ственный минимум.

Процедура Ньютона-Рафсона имеет вид

wk+1 = wk − (XTBX)−1XT(f − y) = (XTBX)−1XTB
(
Xwk −B−1(f − y)

)
.

Элементы диагональной матрицы B интерпретируются как дисперсии элементов вектора y —

многомерной случайной величины. При этом условное математическое ожидание зависимой

переменной

E(y|x) = σ(x) = f(w,x)

и дисперсия

var(y|x) = E(y2|x)− E2(y|x) = σ(x)− σ2(x) = f(w,x)
(
1− f(w,x)

)
.

Заметим, что для данной гипотезы порождения данных значение зависимой переменной y =

y2, так как y ∈ {0, 1}. Так как матрица B является диагональной, предполагается, что элемен-

ты многомерной случайной величины y некореллированы. При биномиальном распределении

зависимой переменной и нормальном распределении параметров выражение (22), числитель

которого соответствует функции ошибки S(w), процедура оценки параметров моделей имеет
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вид

wk+1 =wk − (XTBX)−1XT(f − y) +
1

2
wT

kAwk =

(XTBX)−1XTB
(
Xwk −B−1(f − y)

)
+

1

2
wT

kAwk.
(47)

Рис. 7 иллюстрирует сходимость вышеописанного алгоритма. На оси абсцисс показана един-

ственная свободная переменная, на оси ординат — значение функции регрессии f и зависимой

переменной y.

Перепишем полученные результаты в виде теоремы.

Теорема 2. Для гипотезы нормального распределения зависимой переменной вариант: би-

номиального при фиксированных ковариационных матриц A−1,B−1 итерационный алго-

ритм оценки параметров обобщенно-линейной модели

∆wk+1 = (XTBX+A)
−1

XTBTy −wk, вариант:

∆wk+1 = (XTBX)−1XTB
(
Xwk −B−1(f − y)

)
+

1

2
wT

kAwk

доставляет локальный минимум функции ошибки общего вида S(w|D,A,B, f) при сходи-

мости последовательности векторов wk.

1.4.6. Оптимизация многокритериальной функции ошибок

При выборе регрессионных моделей в ряде задач требуется использовать несколько функ-

ций ошибок или критериев качества моделей. В качестве примера приведем задачу кредит-

ного скоринга, которая ставится как задача логистической регрессии и предполагает, что

оценка параметров получена в предположении о биномиальном распределении зависимой

переменной. Одновременно, стандарт «Basel-II» [101] выдвигает ряд дополнительных крите-

риев и требований к моделям-претендентам. В таких случаях для выбора строится Парето-

оптимальный фронт, называемый также оболочкой Эджворда-Парето [305, 201], включаю-

щий в качестве элементов недоминируемое геометрическое место точек.

Для решения задачи восстановления регрессии задается множество критериев, условиям

оптимальности которых должна удовлетворять модель. Отыскиваются векторы, принадле-

жащие Парето-оптимальному фронту множества всех векторов, соответствующих порожден-

ным моделям [26, 71, 193]. Поставим оптимизационную задачу оценки Парето-оптимального

фронта в многокритериальной оптимизации. Рассмотрим невыпуклую немонотонную вектор-

функцию ζ : W → S, переводящую односвязную область W ⊆ Rn в область S ⊆ Rp. Мно-

жество W будем называть множеством возможных решений, а множество S — множеством

достижимых значений критериальных векторов

S = {s : s = ζ(w),w ∈ W}.

Направления желательного изменения критериев заданы следующим образом. Задано

отношение доминирования на множестве S такое, что вектор s1 ∈ S доминирует вектор s2 ∈
S,

s1 ≻ s2, если s11 > s21, ..., s1p > s2p,
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при условии, что векторы s1 = [s11, ..., s1p]
T и s2 = [s21, ..., s2p]

T не совпадают.

Множество S∗(ζ) недоминированных значений целевой функции ζ называется Парето-

оптимальным фронтом

S∗ = {s∗ : ∄ζ(w) ≻ s∗,w ∈ W}.
Множество векторов W∗ = {w∗} из прообраза отображения ζ : W → S будем называть

Парето-оптимальным множеством, если образ каждого из этих векторов принадлежит

Парето-оптимальному фронту:

W∗ = {w∗ ∈ W : ζ(w∗) ∈ S∗}.

Одним из способов сведения задачи многокритериальной оптимизации к однокритериаль-

ной является свертка критериев. Сверткой ϕ вектор-функции ζ будем называть взвешенную

сумму

ϕ
(
v, ζ(w)

)
=

p
∑

i=1

viζi(w), где

p
∑

i=1

vi = 1.

Оптимизационная задача имеет вид

ŵ = argmax
w∈W ,v∈{‖v‖1=1}

ϕ
(
v, ζ(w)

)
.

Рис. 8. Пример полученного Парето-оптимального фронта.

Парето-оптимальный фронт S∗ также можно получить, максимизируя один из интеграль-

ных критериев его качества[388, 179, 263] , описанных ниже.

Критерии качества найденного Парето-оптимального фронта включают критерии

двух типов: близость к истинному фронту и разнородность или разброс решений в простран-

стве. Критерии близости:

1) число найденных решений Kconv (в частных случаях предполагается, что множество най-

денных решений счетно), расстояние от которых до предполагаемого или известного

фронта не превышает заданное;
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2) отношение числа недоминируемых точек фронта Knondom к количеству точек;

3) средняя сходимость к фронту µAC.

Используется следующая модификация последнего критерия:

µAC =
1

K

K∑

i=1

di,

где K — число точек, принадлежащих фронту, а di — евклидово расстояние от i-й точки до

известной границы фронта.

Критерии разнородности:

1) критерий разнообразия Шотта µSS,

2) критерий отношений объемов µVR,

3) критерий разности объемов µVD,

4) критерий разнородности µDD.

Критерий разнообразия Шотта равен

µSS =

√
√
√
√ 1

K − 1

K∑

i=1

(di − d̄)2,

где

di = min
k

p∑

j=1

|sij − skj|, i, k ∈ {1, ..., K}

является манхеттенским расстоянием между точками si, sk найденного фронта, а d̄ — среднее

расстояние d1, ..., dK .

Критерий отношений объемов равен

µVR =
h

H
,

где

h =

p
∏

j=1

(

max
i∈{1,...,K}

sij − min
k∈{1,...,K}

skj

)

,

и H — объемы минимальных кубов размерности p, соответственно включающих полученный

и истинный фронты.

Критерий разности объемов — относительный объем области, доминируемой точками по-

лученного фронта. Обозначим буквами C(s1), . . . , C(sK) положительные конусы с вершинами

в точках s1, . . . , sK фронта, включающие геометрическое место точек, доминирующее данные

точки. Пусть r — заданная опорная точка, R — отрицательный конус, геометрическое место

точек, доминируемое опорной точкой.

Критерий разности объемов задан как

µVD =
vol
(
⋃K
i=1(C(si) ∩ R)

)

vol
(⋃

s∈Z∗(C(s) ∩ R)
) .
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Рис. 9. Максимизация объема, заданного опорной точкой при поиске Парето-оптимального

фронта.

Здесь vol(·) — объем объединения конусов, а Z∗ — множество всех точек в истинном фронте.

Рисунок 9 иллюстрирует процедуру вычисления этого критерия. Точки s1, s2 на рисунке

задают конусы C(s1), C(s2). Опорная точка r задает отрицательный конус R. Заштрихован-

ная область соответствует объединению конусов:

(
C(s1) ∩ R

)
∪
(
C(s2) ∩R

)
.

Искомое значение критерия определяется объемом этой области в p-мерном пространстве.

1.5. Ограничения, накладываемые на множество моделей

После оценки параметров выбранной регрессионной модели встает вопрос о её статистиче-

ских свойствах. При этом кроме требований и ограничений заданных прикладной задачей ис-

следуется, во-первых, качество полученной функции регрессии и, во-вторых, её устойчивость

относительно возмущения параметров. В первом случае выполняется анализ регрессионных

остатков, во втором случае исследуется мультиколлинеарность признаков и вырожденность

пространства параметров.

1.5.1. Анализ регрессионных остатков

Требование соответствия вектора регрессионных остатков ε = y − f принятой гипотезе

порождения данных не только задает функцию ошибки, но и влечет ряд дополнительных

условий, проверка которых называется анализом регрессионных остатков.

Анализ регрессионных остатков заключается в проверке следующих гипотез:

1) что матожидание регрессионных остатков равно нулю,

E(ε) = 0, (48)

2) дисперсия регрессионных остатков постоянна и не зависит от переменной x,

Cov(ε) = σ2I, (49)

3) что регрессионные остатки распределены нормально,

ε ∼ N (0, σ2I), (50)
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Рис. 10. Гетероскедактичные регрессионные остатки с ненулевым средним.

где ε — вектор регрессионных остатков некоторой модели. На рисунке 10 представлен пример

регрессионных остатков, не удовлетворяющих ни одному из условий (48), (49) и (50).

Гипотеза (48) проверяется критерием знаков. Гипотеза гомоскедастичности [120, 352, 192]

или постоянства дисперсий (49) проверяется тестом Ансари-Брэдли и критерием Голдфелда-

Кванта. Так как тест Ансари-Брэдли проверяет равенство дисперсий двух выборок, предла-

гается разбить выборку регрессионных остатков на две подвыборки несколько раз. Незави-

симость (49) проверяется статистикой Дарбина-Ватсона. Нормальность распределения (50)

проверяется критерием согласия χ2, который сравнивает распределение остатков с эталон-

ным нормальным распределением, параметры которого вычислены по регрессионным остат-

кам. Вышеперечисленные тесты и статистики подробно рассмотрены в [43, 4, 243, 79, 183].

При отвержении теста гомоскедастичности рекомендуется использовать один из нижепе-

речисленных тестов гетероскедаксичности.

Тест Уайта. Предположим, что гетероскедастичность модели вызвана неявной зависимо-

стью дисперсий ошибок от признаков. Примем гипотезу H0 без каких-либо предположений

о структуре гетероскедастичности. Сначала применим к исходной модели метод наимень-

ших квадратов и найдем вектор регрессионных остатков ε. Затем восстановим регрессию

квадратов этих остатков ε2 на все признаки, их квадраты, попарные произведения и кон-

станту. Тогда при неотвержении гипотезы H0 величина mR2 асимптотически имеет распре-

деление χ2(N−1), где m — число элементов выборки, N — число признаков второй регрессии

а R2 — коэффициент детерминации

R2 def
= 1− ‖ε‖2

‖y − ȳ1‖2 , здесь ȳ =
1

m

∑

i∈I
yi.

Недостаток этого теста в том, что если гипотеза H0 отвергается, получить зависимость дис-

персии регрессионных остатков от независимых переменных невозможно.
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Тест Голдфелда-Кванта. Применяется, когда есть предположение о прямой зависимости

дисперсии ошибок от одного признака χj . Упорядочим множество индексов I ∋ i по убы-

ванию признака χj, исключим d средних наблюдений (пусть d ≈ 3−1m), восстановим две

независимые регрессии для первых d наблюдений и последних d наблюдений получим ре-

грессионные остатки ε1 и ε2. Далее вычислим статистику Фишера

F =
εT

1ε1

εT

2ε2
.

Если верна гипотеза H0, то F имеет распределение Фишера. Большая величина этой стати-

стики означает, что гипотеза H0 отвергается.

Критерий Дарбина-Ватсона. Если выборочная регрессия f̂ = f(ŵ,X) описывает истин-

ную зависимость между y и X, то регрессионные остатки ε = [ε1, . . . , εm]
T должны быть

независимыми, что проверяется при помощи коэффициента корреляции Дарбина-Ватсона

D = ‖ε‖−2
m∑

i=2

(εi − εi−1)
2.

При D > D1(τ) или D > 4 − D1(τ) с достоверностью τ принимается гипотеза о нали-

чии соответственно отрицательной или положительной корреляции регрессионных остатков.

При D2(τ) > D > D1(τ) или 4 − D1(τ) > D > 4 − D2(τ) критерий не позволяет выявить

наличие или отсутствии корреляции регрессионных остатков. При D2(τ) < D < 4−D2(τ) ги-

потеза корреляции регрессионных остатков отклоняется. Критические значения D1(τ), D2(τ)

для различных τ заданы.

В статистический отчет об анализе регрессионных остатков вместе со значением функции

ошибки и результатами, полученными при тестировании вышеперечисленных гипотез входят

также значения следующих критериев:

1) квадрат остаточной дисперсии:

σ2
res =

1

m

∑

i∈I

(
yi − f(ŵ,xi)

)2
.

2) квадрат дисперсии зависимой переменной:

σ2
y =

1

m

∑

i∈I
(yi − ȳ)2,

где ȳ = 1
m

∑

i∈I yi — среднее значение элементов вектора y.

3) коэффициент детерминации:

R2 = 1− mσ2
res

σ2
y

.

В частности, если этот коэффициент окажется больше 0.95, то линейная регрессионная мо-

дель считается адекватной экспериментальным данным, иначе — неадекватной.
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1.5.2. Адекватность регрессионной модели

«Адекватность модели — соответствие модели моделируемому объекту или процессу.

Адекватность — в какой-то мере условное понятие, так как полного соответствия модели

реальному объекту быть не может, иначе это была бы не модель, а сам объект. При моде-

лировании имеется в виду адекватность не вообще, а по тем свойствам модели, которые для

исследования считаются существенными» [72].

Адекватной регрессионной моделью [155] называется модель, удовлетворяющая условию

максимума критерия Мэллоуза Cp,

Cp =
‖y− f(ŵA,XA)‖2
‖y − f(ŵJ ,XJ )‖2

− |I|+ 2|A|.

Другими словами, адекватной регрессионной моделью, называется модель, имеющая оп-

тимальную сложность, определенную с помощью данного критерия [300]. Нижние индек-

сы A,J задают наборы признаков, на которых получены оценки параметров ŵA, ŵJ .

Предположим, что модель адекватна и рассмотрим основные статистические свойства

переменных, которые она включает [90]. Оценки параметров ŵ = wML модели являются

несмещенными, найдем их матожидание следующим образом

E(ŵ) = E
(
(XTX)−1XTy

)
= E

(
(XTX)−1XT(Xw + ε)

)
= w, (51)

так как E(ε) = 0 и (XTX)−1XTX = I. Ковариационная матрица многомерной случайной

величины w имеет вид

Cov(w) = E ((w − Ew)(w− Ew)T) = σ2(XTX)−1,

так как E(εεT) = Iσ2. То есть матрица (XTX)−1 является матрицей оценок ковариаций эле-

ментов вектора параметров w.

Оценка вектора зависимых переменных y находится с помощью оценки вектора парамет-

ров w. Принимая линейную модель E(y|X) = Xw, получаем оценку ŷ = E(y|X) = Xŵ. При

этом дисперсия зависимой переменной E
(
E(y|X)

)
— ковариационная матрица многомерной

случайной величины y, которая определяется выражением

Cov(y) = Cov(Xw) = XCov(w)XT = X(XTX)−1XTσ2.

Вектор регрессионных остатков ε, получаемый в результате оценки параметров, опреде-

ляется выражением

ε = y− ŷ =
(
I−X(XTX)−1XT

)
y, (52)

где матрица (I−X(XTX)−1XT) = P симметрична и идемпотентна: PT = P и P2 = P.

Рассмотрим свойства суммы квадратов регрессионных остатков

SSE = εTε. (53)

Подставляя выражение (52) в (53) и учитывая, что

ŵT = yTX(XTX)−1,
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получаем

SSE = yT
(
I−X(XTX)−1XT

)
y = yTy − ŵTXTy. (54)

Здесь SSE записана как квадратичная форма вектора y. Так как мы предполагаем, что

y ∼ N (Xw, σ2I), (55)

то математическое ожидание SSE имеет вид [270, 94].

Так как наиболее правдоподобная оценка параметров w при предположении (55) име-

ет вид w = (XTX)−1XTy, и функция ошибки в этом случае задана как S(w) = SSE, то

математическое ожидание суммы квадратов регрессионных остатков имеет вид

E(S(w)) = tr
(
I−X(XTX)−1XT

)
Iσ2 + (Xw)T

(
I−X(XTX)−1XT

)
Xw. (56)

Так как след идемпотентной матрицы (в данном случае это матрица Мура-Пенроуза

X(XTX)−1XT), то

E(S(w)) = rank
(
(I−X(XTX)−1XT

)
Iσ2 =

(
m− rank(X(XTX)−1XT)

)
σ2

= (m− rank(X)) σ2 = (m− n)σ2,

здесь m — число элементов выборки и строк матрицы X. Если матрица плана X не содержит

коллинеарных столбцов и её ранг rank(X) = n, то несмещенной оценкой σ2 является оценка

σ̂2 =
S(w)

m− n
.

Оценки ŵ и σ2 являются независимыми [346]. Для того, чтобы это показать, рассмотрим

выражения (51) и (56) с учетом предположения (55) и проверим равенство нулю следующего

выражения:

(XTX)−1XT(σ2I)
(
I−X(XTX)−1XT

)
= 0.

Статистика SSE
σ2

имеет χ2-распределение. Из выражения (54), SSE является квадратич-

ной формой от вектора y, поэтому SSE = yTPy, где матрица P = I − X(XTX)−1XT. Так

как SSE/σ2 = yT( 1
σ2
P )y, где матрица P идемпотентна и Cov(y) = σ2I, то матрица 1

σ2
Pσ2I

тоже идемпотентна. Таким образом, при предположении (55) матрица yTPy имеет нецен-

тральное распределение

yTPy ∼ χ2

(

rank(P ),
1

2
(Xw)TPXw

)

и, следовательно,

1

σ2
SSE ∼ χ2

(

rank
(
I−X(XTX)−1XT

)
,

1

2σ2
(Xw)T

(
I−X(XTX)−1XT

)
Xw

)

,

что приводимо к виду 1
σ2

SSE ∼ χ2
m−n, где rank(X) = n. В результате имеем следующее

распределение:
σ̂2

σ2
(n− p) ∼ χ2

m−n.

Мы показали, что 1
σ2

SSE имеет центральное χ2-распределение. Покажем, что SSR име-

ет нецентральное χ2-распределение, независимое от SSE. С помощью этих двух статистик

получим F -статистику, имеющую нецентральное F -распределение.
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Таблица 5. Анализ дисперсии регрессионных остатков.

Источник

дисперсии

Сумма квадратов ре-

грессионных остатков

Число степе-

ней свободы

Средние квадра-

ты

F -статистика

Регрессия SSR = wTXTy n MSR =
1

n
SSR FR =

MSR
MSE

Остатки SSE = yTy −wTXTy m− n MSE =
1

(m−n)SSE

Общая дис-

персия

SST = yTy n

Составные части суммы квадратов невязок. Представим полную сумму квадратов

невязок как

SSR = SST − SSE = wTXTy,

где SST = yTy. Из последнего выражения получаем SSR = yTX(XTX)−1XTy. Используемая

здесь матрица Q = X(XTX)−1XT идемпотентна; произведение Q (I−X(XTX)−1XT) равно

нулю. Следовательно, при предположении (55), квадратичные формы yTPy и yTQy распре-

делены независимо только тогда [346], когда

P (σ2I)Q = 0 = Q(σ2I)P.

Выражение (57) равно матрице с нулевыми элементами,

X(XTX)−1XT
(
I−X(XTX)−1XT

)
σ2 =

(
X(XTX)−1XT −X(XTX)−1XT

)
σ2 = 0, (57)

и, следовательно, величины SSR и SSE распределены независимо.

Статистика 1
σ2

SSR имеет χ2-распределение. Поэтому, если 1
σ2

SSR = yT( 1
σ2
)Qy, так как

матрица Q является идемпотентной и Cov(y) = σ2I, то матрица 1
σ2
Q(σ2I) также является

идемпотентной. Следовательно, при предположении (55), случайная величина yTQy имеет

нецентральное распределение

yTQy ∼ χ2

(

rank(Q),
1

2
(Xw)TQXw

)

,

и
1

σ2
SSR ∼ χ2

(

rank
(
X(XTX)−1XT

)
,

1

2σ2
(Xw)TX(XTX)−1XTXw

)

,

приводимая к виду
1

σ2
SSR ∼ χ2(p,

1

2σ2
wTXTXw).

Построим на полученных результатах нецентральное F -распределение, получим из табли-

цы 5

FR =
1
n
SSR

1
m−nSSE

∼ F (n,m− n,
1

2σ2
wTXTXw).

Анализ дисперсии регрессионных остатков. Представим выведенные ранее F -

статистики в виде таблицы анализа дисперсии, см. таблицу 5. В таблице представлены суммы

квадратов регрессионных остатков, соответствующие им степени свободы соответствующих

χ2-распределений, а также значения самих F -статистик.
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Опишем некоторые свойства распределения регрессионных остатков. При симметричной

и идемпотентной матрице P = I−X(XTX)−1XT остатки представимы в виде ε = y−Xw =

y − X(XTX)−1XTy = (I−X(XTX)−1XT)y = Py. Отсюда, ожидаемые величины остатков

E(ε) = E(Py) = PXw = (I−X(XTX)−1XT)Xw = 0, поскольку PX = 0, и ковариационная

матрица Cov(ε) = Cov(Py) = P2σ2 = Pσ2.

Проверка гипотез о матожидании параметров. Статистика FR в таблице 5 имеет

нецентральное F -распределение с параметром нецентральности 1
2σ2

wTXTXw. Этот пара-

метр становится нулевым при гипотезе: Ew = 0. Тогда статистика FR имеет центральное

F -распределение Fn,m−n. Если при p-уровне значимости FR больше значений табличного рас-

пределения Fn,m−n, то нулевая гипотеза E(w) = 0 отклоняется. Если величина когда FR для

некоторой модели E(y) = Xw является значимой, то модель объясняет значительную часть

дисперсии переменной y. Если при p-уровне значимости статистика FZ больше табличного

значения F1,m−1, то нулевая гипотеза E(w) = 0 отклоняется.

1.5.3. Устойчивость моделей и мультиколлинеарность

Основная проблема, возникающая при порождении признаков, — проблема мульти-

коллинеарности. Термин мультиколлинеарность введен Р. Фришем [200] при рассмотрении

линейных зависимостей между признаками. Мультиколлинеарность проявляется в сильной

корреляции между двумя или более признаками [χ1, . . . ,χj , . . . ,χn] — столбцами матрицы

X, что затрудняет оценивание параметров модели. Мультиколлинеарность называют полной,

если существует функциональная зависимость между всеми признаками. При этом стано-

вится невозможно однозначно оценить параметры модели. На практике встречаются случаи

частичной мультиколлинеарности, когда имеется высокая степень корреляции между неко-

торыми признаками. Тогда решение получить можно, однако оценки параметров модели и

их дисперсий могут быть неустойчивы. Увеличиваются дисперсии оценок и абсолютные зна-

чения регрессионных параметров, что усложняет их интерпретацию.
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Рис. 11. Зависимость коэффициентов инфляции дисперсии от параметра κ.
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Перечислим некоторые признаки мультиколлинеарности: значительные изменения в

оценках параметров при добавлении или удалении признака, превышение некоторого порога

абсолютным значением корреляции между признаками, близость к нулю определителя мат-

рицы попарных корреляций Cor(χj,χk) признаков. Основные способы обнаружения мульти-

коллинеарности — проверка корреляции между признаками [182], исследование факторов

инфляции дисперсии (VIF — variance inflation factor) [303], метод Белсли [134, 203].

Корреляция между признаками. Пусть X = [χ1, . . . ,χj, . . . ,χn] — матрица признаков,

столбец χj = [x1j , . . . , xmj ]
T которой соответствует значениям j-го признака при различных

измерениях. Корреляционной матрицей называется матрица, элементами которой являются

выборочные корреляции между столбцами:

Cor(χj,χk) =
(χj − x̄j1)

T(χk − x̄k1)

‖χj − x̄j1‖‖χk − x̄k1‖
, j, k ∈ J, x̄j =

1

m

m∑

i=1

xij ,

где χj ,χk — cтолбцы X, x̄j , x̄k — средние значения соответствующих признаков, 1 — стол-

бец из единиц, число которых равно числу признаков, см. [69]. В случае центрированных и

нормированных (12) признаков χj,χk

Cor(χj ,χk) = χT

iχj.

Допустимым уровнем значимости называется минимальный уровень, вычисленный для дан-

ного значения статистики: значения коллинеарности преобразуются к t-статистике с m − 2

степенями свободы в случае выполнения гипотезы неколлинеарности признаков. Если задан

некоторый уровень значимости и вычисленные допустимые уровни значимости Cor(χj ,χk)

меньше заданного уровня, то cчитается, что мультиколлинеарность велика. Отметим, что

такие значения не обязательно являются следствием мультиколлинеарности.

Факторы инфляции дисперсии. Для оценки мультиколлинеарности строится линейная

регрессия всех признаков, кроме j-го, на j-й признак:

χj = XAw + εj, где A = {1, . . . , n} \ {j}.

Коэффициенты регрессии вычисляются с помощью метода наименьших квадратов.

Рассмотрим дисперсию регрессионных остатков σ2
ε при условии их гомоскедастичности

ε ∼ N (0, σ2
εI). (58)

Значение фактора VIF для j-го параметра определим как

VIFj =
1

1− R2
j

,

где R2
j — коэффициент детерминации, вычисленный для j-го признака:

R2
j = 1− ‖εj‖2

‖χj − x̄j1‖2
,
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где x̄j — среднее значение j-го признака. Дисперсия j-го параметра при этом равна

σ2(wj) = VIFj
σ2
ε

‖χj − 1x̄j‖2
.

Наличие мультиколлинеарности определяется по значениям VIF. Если VIF > 10, то счи-

тается [271], что мультиколлинеарность велика. На рис. 11 показано изменение VIF для че-

тырех признаков. Каждому значению модельного параметра κ ∈ (0, 1) соответствует набор

значений факторов инфляции дисперсии. При изменении параметра признаки принимают

следующие значения. Векторы χ1,χ2 фиксированы. Векторы χ3,χ4 приближаются соответ-

ственно к χ1,χ2 так, что κ = cos(χ1,χ3) = δ + cos(χ2,χ4), где δ — некоторая небольшая

константа. Видно, что при увеличении параметра κ значение VIF может расти неограничен-

но. Сильная мультиколлинеарность влечет бесконечные значения VIF. Основной недостаток

данного метода заключается в том, что коэффициент детерминации может принимать бес-

конечные значения сразу для многих значений индекса признака j ∈ J .

Обнаружение мультиколлинеарности признаков с использованием сингулярного

разложения. Рассмотрим приближенное линейное описание[42] матрицы X = [xij ] вида

xij =
r∑

k=1

uikλkvkj + cij, (59)

где i ∈ {1, . . . , m} и j ∈ {1, . . . , n}. Приближенное линейное описание (59) более подробно

описано в [51]. Значения ukj, λk, vjk для данного значения k находятся из условия минимума

выражения
m∑

i=1

n∑

j=1

c2ij → min, (60)

при ограничениях нормировки
n∑

k=1

u2ik =

n∑

k=1

v2kj = 1 (61)

и упорядоченности λ1 > . . . > λr > . . . > 0, i ∈ {1, . . . , m} и j ∈ {1, . . . , n}.

Рис. 12. Сингулярные числа матрицы плана.

Запишем выражения (59), (60) и(61) в матричных обозначениях:

X = UΛVT +C,

tr(CCT) = ‖C‖2 → min,

UTU = VVT = I,
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где U = [uik],Λ = diag[λk],V = [vkj]. Если значение r достаточно велико, то C = 0. Так

будет заведомо при r ≥ min{m,n}. Минимальное значение r, при котором выполнимо равен-

ство X = UΛVT, равно рангу матрицы X.

В работах [51, 48] утверждается, что задача минимизации выражения (60) при усло-

вии (61) эквивалентна задаче приближенного представления функции двух переменных

f(x1, x2) суммой попарных произведений
∑

i gi(x1)hi(x2) функций gi(x) и hi(y) одной пере-

менной.

Рассмотрим квадратичный алгоритм решения этой задачи. Найдем последовательно век-

торы uk,vk и сингулярные числа λk для k = 1, . . . , r. В качестве этих векторов берутся

нормированные значения векторов ak и bk, соответственно

uk
m×1

=
ak

‖ak‖
и vk

1×n
=

bk

‖bk‖ .

Векторы ak и bk находятся как пределы последовательностей векторов {aks} и {bks}, соот-

ветственно

ak = lim
s→∞

(aks) и bk = lim
s→∞

(bks).

Сингулярное число λk находится как произведение норм векторов

λk = ‖ak‖ · ‖bk‖.

Рис. 13. Итеративная процедура оценивания сингулярных векторов.

Процедура нахождения последовательностей векторов aks ,bks uk,vk начинается с выбо-

ра наибольшей по норме строки b11 матрицы X. Для k = 1 формулы нахождения векто-

ров a1s ,b1s имеют вид:

a1s
m×1

=
XbT

1s

b1sb
T

1s

, b1s+1

1×n
=

aT

1sX

aT

1sa1s

, s = 1, 2, · · · .

Для вычисления векторов uk,vk при k = 2, . . . , r используется вышеприведенная формула, c

той разницей, что матрица X заменяется на скорректированную на k-м шаге матрицу Xk+1 =

Xk−ukλkvk. На рисунке 13 показаны две итерации, s = 1, 2, первого шага k = 1 упрощенной

процедуры нахождения сингулярного разложения.

Для исследования мультиколлинеарности признаков рассмотрим сингулярное разложе-

ние матрицы X. Пусть матрица признаков X имеет размерность m×n, центрирована и нор-

мирована. Выполним сингулярное разложение [41, 240, 256, 250, 50] матрицы X,

X = UΛVT, (62)
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где U,V — ортогональные матрицы размерности, соответственно, m × n и n × n и Λ —

диагональная матрица с сингулярными числами на диагонали, такими, что

λ1 > λ2 > · · · > λn > 0. (63)

Столбцы матрицы V являются собственными векторами, а квадраты сингулярных чисел —

собственными значениями матрицы XTX:

XTX = VΛTUTUΛVT = VΛ2VT.

Из предыдущего выражения получим

XTXV = VΛ2. (64)

Найдем матрицу, псевдообратную матрице XTX в номальном уравнении (38), используя

выражение (64). Для псевдообратной матрицы X+, такой, что

XX+X = X,

X+XX+ = X+,

(XX+)T = XX+,

(X+X)T = X+X

справедливо выражение

X+ = VΛ−1UT.

По условию, матрица X невырождена. Следовательно, матрица XTX также не является

вырожденной. Числа обусловленности этих матриц относятся как

κ(X) =
λ1
λn

=
√

κ(XTX),

то

(XTX)−1 = VTΛ−2V. (65)

Матрица X(XTX)−1XT называется матрицей Мура-Пенроуза [136] при условии полного

ранга X. При использовании этой уравнение (38) принимает вид

w = (XT)−1XTy = X+y. (66)

Используя (62), (65) и (66) получим выражение

w = VΛ−1UTy. (67)

Оценка ковариационной матрицы параметров w при условии (58) имеет вид

Cov(w) = σ2
ε(X

TX)−1. (68)

Из (67), используя индексацию, принятую в (59), получим

wj =

n∑

k=1

vkj
λk

m∑

i=1

uijyi.



60

var(w1) var(w2) var(w3) var(w4)

η1

η2

η3

η4

var(w1) var(w2) var(w3) var(w4)

η1

η2

η3

η4

var(w1) var(w2) var(w3) var(w4)

η1

η2

η3

η4

var(w1) var(w2) var(w3) var(w4)

η1

η2

η3

η4

var(w1) var(w2) var(w3) var(w4)

η1

η2

η3

η4

var(w1) var(w2) var(w3) var(w4)

η1

η2

η3

η4

Рис. 14. Матрица значений долевых коэффициентов для различных значений параметра κ.
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Таблица 6. Индексы обусловленности и дисперсии параметров.

σ2(w1) . . . σ2(wj) . . . σ2(wn)

η1 q11 . . . q21 . . . qn1
...

...
. . .

...
. . .

...

ηk q1k . . . qjk . . . qnk
...

...
. . .

...
. . .

...

ηn q1n . . . q2n . . . qnn
n∑

k=1

qjk 1 . . . 1 . . . 1

Представим ковариационную матрицу параметров (68) в виде

Cov(w) = σ2
ε







∑n
k=1

v2
1k

λ2
k

. . .
∑n

k=1
v1kvnk

λ2
k

...
. . .

...
∑n

k=1
vnkv1k
λ2
k

. . .
∑n

k=1
v2
nk

λ2
k






.

Дисперсия j-го элемента вектора параметров w имеет вид

σ2(wj) = σ2
ε

n∑

k=1

v2jk
λ2k
.

Матрица корреляций вектора параметров имеет вид

Cor(w) = Q− 1

2Cov(w)Q− 1

2 ,

где Q = diag(VΛ−2V) — диагональ матрицы VΛ−2V.

Назовем индексом обусловленности ηk сингулярного разложения отношение максималь-

ного сингулярного числа к k-му сингулярному числу

ηk =
λmax

λk
. (69)

Для обнаружения мультиколлинеарности признаков построим таблицу, в которой каждому

индексу обусловленности ηk соответствуют значения qkj — долевые коэффициенты, кото-

рые в сумме по индексу k дают единицу. Они представляют собой части от общей величи-

ны σ−2
ε σ(wj).

Представим диагональные элементы ковариационной матрицы параметров

Cov(w) = σ2
ε(X

TX)−1 = σ2
εVΛ−2VT.

в следующем виде:

σ2(wj) = σ2
ε

(
v2j1
λ21

+ · · ·+ v2jk
λ2k

+ · · ·+ v2jn
λ2n

)

=

= σ2
ε(qj1 + · · ·+ qjk + · · ·+ qjn)

n∑

k=1

v2jk
λ2k

=

= σ2
ε

n∑

k=1

qjk

n∑

k=1

v2jk
λ2k
,
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где qjk — отношение соответствующего слагаемого в разложении σ−2
ε σ2(wj) ко всей сумме.

Наличие мультиколлинеарности определяется по таблице: большие величины ηk означают,

что, возможно, есть зависимость между признаками. Большие значения qjk в соответствую-

щих строках относятся к признакам, между которыми эта зависимость существует.

Из определения (69) и неравенства (63) следует, что индекс обусловленности монотонно

возрастает. Следовательно, наибольшие значения индекса k будут соответствовать наиболь-

шим значениям индекса обусловленности ηk. Для фильтрации мультиколлинеарных при-

знаков выделим последние несколько элементов ηk̂, . . . ηn в отдельную группу для анализа.

Предлагается найти значение k̂ как минимум второй частной разности:

k̂ = argmin
k∈{1,...,n−2}

(ηk − 2ηk+1 + ηk+2).

Для того, чтобы найти признак ĵ, который требуется отфильтровать, предлагается решить

задачу

ĵ = argmax
j∈{1,...,n}

n∑

k=n−k̂+1

qjk.

Другими словами, находится индекс признака, доставляющего максимальную сумму доле-

вых коэффициентов qjk, соответствующих множеству выделенных индексов обусловленно-

сти ηk̂, . . . , ηn.

Рисунок 14 показывает изменение значений долевых коэффициентов, которые вычисля-

ется по синтетическим данным. Углы между четырьмя векторами χ1, . . . ,χ4 — столбцами

матрицы X изменяются так, что угол между первым и третьим столбцом, задаваемый пара-

метром κ, уменьшается.

Основными методами устранения мультиколлинеарности являются выбор признаков, ли-

бо введение ограничений на значения параметов модели [112, 158, 335, 230]. Более подробно

эти методы будут рассмотрены далее.
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2. Порождение моделей

Задача восстановления регрессии включают в себя не только методы выбора оптимальной

параметрической регрессионной модели, но и методы порождения таких моделей. Множества

измеряемых признаков зачастую бывает недостаточно для построения модели удовлетвори-

тельного качества. Преблагается расширить множество признаков с помощью функциональ-

ных преобразований исходных признаков с целью повышения адекватности модели. Методы

порождения имеют большую историю: в 1968 году А. Г. Ивахненко предложил метод группо-

вого учета аргументов, МГУА [17, 14, 59, 295]. Согласно этому методу регрессионная модель,

доставляющая наилучшее приближение, выбирается из множества последовательно порож-

даемых моделей. Множество порождаемых моделей задавалось набором мономов полинома

Колмогорова-Габора ограниченной степени. В частности, для построения моделей как су-

перпозиций функций использовались полиномиальные функции, ряды Фурье и некоторые

другие функции, например многослойный перcептрон, функции радиального базиса, полино-

мы Лагранжа, полиномы Чебышёва [83, 59]. При выборе моделей использовался скользящий

контроль [264].

При порождении существенно нелинейных моделей используются методы генетическо-

го программирования и символьной регрессии [402, 258, 269, 296]. Согласно этим методам,

регрессионные модели порождаются как произвольные нелинейных суперпозиции порожда-

ющих функций (англ. primitives) [296]. Для визуализации порожденных моделей используют

регрессионные деревья [234, 144]. При поиске деревьев оптимальной структуры посредством

генетического программирования используется их векторное представление, где число эле-

ментов вектора непостоянно и определяется структурой модели [302, 111, 212, 333].

Одним из методов для решения задачи восстановления функциональной зависимости по

набору исходных данных является символьная регрессия [333, 390, 389, 333]. Джон Коза

предложил реализацию этого метода с помощью аналога эволюционного алгоритма [268].

Иван Зелинка предложил дальнейшее развитие этой идеи [402], получившее название ана-

литического программирования. Алгоритм построения математической модели в аналитиче-

ском программировании выглядит следующим образом: задан набор элементарных функций

(например, степенная функция, +, sin, tan и др.), из которых можно строить различные

формулы. Начальный набор формул строится либо произвольным образом, либо на базе

некоторых предположений эксперта. Затем на каждом шаге производится оценка каждой из

формул согласно некоторой функции качества. На базе этой оценки у части формул слу-

чайным образом заменяется одна элементарная функция на другую (например, sin на cos

или + на ×), а у некоторой другой части происходит взаимный попарный обмен подвыраже-

ниями. Данный подход может быть описан в терминах эволюционного алгоритма: каждый

индивид является формулой, изображенной в свою очередь в виде дерева. Тогда набор фор-

мул, существующий в определенный момент, представляет собой одно поколение. При этом

хромосомы представляются поддеревьями, и, в отличие от классического генетического алго-

ритма, могут быть различного размера (длины). Описанный выше обмен подвыражениями

представляет собой в этом случае генетическое скрещивание, замена одной элементарной

функции у некоторых деревьев — мутацию. При этом возникает ряд сложностей, связанных
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с областями определения и арностями элементарных функций, записанных в узлах дерева.

Данный метод фактически является ненаправленным поиском и перебирает большое коли-

чество неподходящих деревьев до того момента, как приблизится к оптимуму.

Альтернативой аналитическому программированию можно считать подход обучения в

глубину (Deep Learning) [138, 126]. Этот подход заключается в иерархическом представле-

нии данных, в котором на нижнем уровне находятся сам набор данных, а на каждом уровне

выше — более абстрактное его представление, которое представляет собой некую скрытую

комбинацию из данных, указанных ниже. Так, например, при использовании данного метода

в обработке изображений, набором данных является матрица яркости пикселей некоторого

изображения, на следующем уровне — данные о выраженных геометрических закономер-

ностях на изображении (отрезки, кривые, окружности), на более высоких уровнях иерар-

хии — более сложные и абстрактные выявленные закономерности. В одном из основных

алгоритмов, использующих данный подход, иерархия строится при помощи нейронной се-

ти с несколькими скрытыми слоями [139]. В одном из основных методов обучения в глубину

нейронная сеть обучается, получая на вход и на выход одинаковый набор данных, после чего

каждый из уровней сети представляется как информация о данных на определенном уровне

абстракции.

В данной работе предлагается рассмотреть метод построения математической модели,

основанный на прогнозировании структуры функциональной зависимости. Предполагается,

что функциональная зависимость существенно нелинейна и, аналогично описанному выше,

является суперпозицией элементарных функций. При этом делается ограничение на макси-

мальную сложность модели. Дерево суперпозиции представляется в виде матрицы. В таком

виде задача сводится к задаче структурного обучения, описанной, например, в [274, 304, 252].

Методы структурного обучения решают задачу нахождения структуры или зависимости,

имеющейся внутри исходных данных. Метод широко применим для синтаксического разбо-

ра предложений [251], компьютерного зрения [275].

В работе И. Зелинки [402] описаны основные проблемы, возникающие при порождении

моделей методами символьной регрессии. В частности, при порождении моделей могут по-

явиться ошибки

1) структуры модели (например, функции, которые неявно зависят от самих себя);

2) несоответствия области определения и области значения (например, функции имеют мни-

мые области значений);

3) неограниченный рост значений (например, возникновение деления на ноль);

4) избыточности структуры модели (например, умножение на ноль некоторой функции).

Метод, предлагаемый в данной работе, избавлен от вышеперечисленных проблем. Он

заключается в следующем, см. рис. 15. Поиск моделей выполняется по итерационной схе-

ме «порождение-выбор» в соответствии с определенными правилами порождения моделей

и критерием выбора моделей. Последовательно порождаются наборы конкурирующих мо-

делей. Каждая модель в наборе является суперпозицией элементов заданного множества
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гладких параметрических функций. После построения модели каждому элементу суперпо-

зиции ставится в соответствие гиперпараметр. Параметры и гиперпараметры модели по-

следовательно настраиваются. Из набора выбираются наилучшие модели для последующей

модификации. При модификации моделей, по значениям гиперпараметров делаются выводы

о целесообразности включения того или иного элемента в модель следующего порождаемого

набора.

Породить

модели

Оценить параметры

и гиперпараметры
Сравнить элементы

моделей
Сравнить

модели

Порождающие 

функции
Выборка, 

гипотеза

Множество порожденных моделей, 

                             модель оптимальной сложности

Рис. 15. Процедура индуктивного порождения и выбор моделей.

Процедура индуктивного порождения и выбора моделей. Рассматривается итера-

тивная процедура порождения-выбора моделей. Основные этапы построения модели показа-

ны на рисунке ниже.

1. Задана выборка — набор реализаций множества независимых и одной зависимой перемен-

ной. Задан набор порождающих функций.

2. Задан набор исходных моделей. Исходные модели могут быть получены в качестве произ-

вольных суперпозиций заданных порождающих функций. Параметры и гиперпараметры

моделей настраиваются в соответствии с оптимизационным методом. Тип метода зависит

от суперпозиции: это может быть метод сопряженных градиентов, метод стохастической

оптимизации или метод наименьших квадратов. Настройка параметров и гиперпарамет-

ров выполняется итеративно.

3. Для каждой модели оцениваются веса элементов суперпозиции. Веса зависят от значений

гиперпараметров.

4. Производится выбор наилучших моделей в соответствии с функцией ошибки. Функция

ошибки зависит от гипотезы порождения данных — исходных предположений о распре-

делении зависимой переменной и параметров модели.

5. Выбранные модели модифицируются, и порождаются новые модели в соответствии с пра-

вилами порождения. Поскольку число порождаемых моделей, вообще говоря, счетно, вво-

дятся дополнительные ограничения на правила порождения моделей. Для того, чтобы

обеспечить разнообразие порождаемых моделей, используется набор порождающих функ-

ций. Информация о том, как модифицировать модели для улучшения качества, заключена
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в гиперпараметрах модели. Алгоритм останавливается при достижении требуемого каче-

ства, или при достижении заданного количества порождаемых моделей.

Методы индуктивного порождения регрессионных моделей, например, метод группового

учета аргументов или символьная регрессия, используют в качестве моделей-претендентов

различные суперпозиции свободных переменных. В частности, МГУА использует линейные

комбинации произведений свободных переменных, а символьная регрессия — их произволь-

ные суперпозиции.

Будем считать, что термин «суперпозиция», используемый в этой работе, является си-

нонимом терминов «формула», «выражение», «математическое выражение», используемых

в работах [187, 188, 314, 333] обозначают некоторую композицию функций, свободных пере-

менных и констант.

Среди множества индуктивно-порожденных суперпозиций могут присутствовать избы-

точные суперпозиции [356, 357, 363]. В них есть подвыражения, которые могут быть удале-

ны или заменены на более простые; при этом отображение из пространства свободных пе-

ременных в пространство зависимых переменных остается неизменным. Проблема решается

методами упрощения суперпозиций, например, методом упрощения выражений по прави-

лам [187, 188] и методом замены поддеревьев на эквивалентные поддеревья меньшей слож-

ности [314]. Суперпозиции представляются в виде направленного ациклического графа с

объединением общих поддеревьев. Такое представление позволяет существенно расширить

класс допустимых преобразований суперпозиций.

Ниже предлагается алгоритм, основанный на упрощении суперпозиций по правилам. При

этом суперпозицией называется некоторая композиция элементарных функций, а правила

описывают, как функции связаны между собой. В качестве примера таких правил можно

указать log ◦ exp ≡ id или tn × tm ≡ tn+m.

В работах [343, 357, 161, 361, 362] предлагается представлять суперпозиции в виде соот-

ветствующего им дерева, над которым и оперировали предлагавшиеся алгоритмы. В работе

Г.И. Рудого [32] суперпозиция представляется не в виде дерева, а в виде направленного

ациклического графа, где различные функции могут принимать в качестве аргумента од-

но и то же подвыражение. Примером может являться суперпозиция cos2 t + sin2 t, где t —

некое сложное подвыражение. Таким образом, искомая задача сводится к задаче нахожде-

ния общих подвыражений в исходном дереве суперпозиции и задания правил упрощения на

множестве подобных ациклических графов.

В работах А.Н. Колмогорова [265] сформулирована следующая теорема, приведенная

здесь в локальных обозначениях: «Каждая непрерывная функция n переменных, заданная

на единичном кубе n-мерного пространства, представима в виде

f(x) =
2n+1∑

i=1

hi

(
n∑

j=1

gij(xj)

)

, где x = [x1, . . . , xn]
T,

где функции hg(ξ) непрерывны, а функции gij также непрерывны и зависят от выбора функ-

ции f». Отсюда следует, что класс порождаемых регрессионных моделей должен быть огра-

ничен двухслойными нейронными сетями. Однако при решении прикладных задач, особенно
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задач математического моделирования, структура модели должна быть интепретируема экс-

пертом в контексте моделируемого явления. Поэтому далее при постановке задач мы будем

считать, что множество порождающих функций и вид индуктивно-порождаемых моделей

заданы экспертно.

2.1. Допустимые суперпозиции

Рассмотрим некоторые алгоритмы, порождающий все возможные суперпозиции заданной

сложности за конечное число шагов. Для описания алгоритмов, задающих классы моделей F,

введем необходимые обозначения.

2.1.1. Порождающие функции и их суперпозиции

Рассмотрим две функции g : X → Y и h : Y′ ⊇ Y → Z и пусть Y′∪Y 6= ∅. Их композицией

называется функция f = g ◦ h : X → Z, определенная равенством

(h ◦ g)(x) = h(g)(x), x ∈ X.

Пусть задано множество G = {gi} функций. Для каждой функции gi задана область опреде-

ления Xi = dom(gi) и область значения Yi = cod(gi). Пусть множество значений Yi функции

gi содержится в области определения Xi+1 функции gi+1, то есть

gi : Xi → Yi ⊆ Xi+1, i = 1, 2, . . . , K − 1, (70)

то функция

f = gK ◦ gK−1 ◦ · · · ◦ g1, K ≥ 2, (71)

определяемая равенством

f(x) = (gK ◦ gK−1 ◦ · · · ◦ g1)(x) = gK
(
gK−1

(
. . . (g1)

))
(x), x ∈ X, (72)

называется сложной функцией или суперпозицией функций g1, g2, . . . , gK .

Определение 9. Суперпозиция f функций {g1, . . . , gK} — функция, представленная как

композиция нескольких функций, определяемая выражениями (71–72) при выполнении усло-

вия (70).

Функции g = g(b, ξ) с параметрами b и аргументом ξ, принадлежащие множеству G,

далее будут называться порождающими функциями.

Определение 10. Допустимой суперпозицией f называется такая суперпозиция, в кото-

рой

cod(gi(k+1)) ⊆ dom(gi(k)) для всех k = 1, . . . , K − 1.

Для обобщения этого определения случай функций нескольких аргументов будем счи-

тать, что функции g1, . . . , gK , входящие в суперпозицию, являются вектор-функциями от

векторных величин ξ. При этом и области определения Xi, и области значений Yi этих вектор-

функций являются подмножествами декартова произведения пространств соответствующих

аргументов.
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Пусть задано множество порождающих функций G = {g1, . . . , gl|g = g(b, ·)}, то есть,

заданы

1) сама функция g : (b, ξ) 7→ξ′,

2) число ее параметров b (возможен пустой набор),

3) число аргументов (арность) v(g) функции g (возможен пустой набор) и порядок следова-

ния аргументов,

4) домен dom(g) и кодомен cod(g).

Требуется построить функцию f как суперпозицию порождающих функций из заданного

множества G. Модель f(w,x) рассматривается как суперпозиция

f(w,x) = (gi(1) ◦ · · · ◦ gi(K))(x), где w = [bT

i(1), . . . ,b
T

i(K)]
T,

в которой вектор w состоит из присоединенных векторов-параметров b функций g, водящих

в суперпозицию f .

Для порождения моделей требуется задать:

1) множество непорождаемых переменных {ξ} с заданным dom(ξ),

2) множество порождающих функций G = {gu, id}, g : x7→x′,

3) правило Gen порождения допустимых суперпозиций G ⊃ G, где суперпозиция gj = gu ◦
gv ∈ G, построена с учетом ограничений

на число аргументов v(gu),

на область определения cod(gu),

на структурную сложность суперпозиции C(gj) 6 Cmax,

на число и типы входных и выходных переменных,

4) правило Rem упрощения суперпозиций: gk /∈ G, если

Rem : gk = gu ◦ gv 7→ gj ∈ G.

Результатом порождения допустимых суперпозиций является набор F моделей-претендентов

f , из которого производится выбор.

Поставим в во взаимно-однозначное соответствие каждой суперпозиции f дерево Γf , ко-

торое строится следующим образом:

1) в вершинах Vi дерева Γf находятся соответствующие порождающие функции gs, s = s(i);

2) число дочерних вершин у некоторой вершины Vi равно арности соответствующей функции

gs;

3) порядок вершин, дочерних для Vi, соотвествует порядку аргументов соответствующей

функции gs(i);
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4) в листьях дерева Γf находятся свободные переменные xi.

Вычисление значения выражения f = f(w,x) в некоторой точке x с заданным векто-

ром параметров w = {w1, w2, . . . , wη} эквивалентно подстановке соответствующих значений

свободных переменных x и параметров w функцию f , соответствующую дереву Γf . Каж-

дое поддерево Γif дерева Γf , соответствующее вершине Vi, также соответствует некоторой

суперпозиции, являющейся составляющей исходной суперпозиции f .

2.1.2. Условия допустимости суперпозиций

Методы индуктивного построения регрессионных моделей используют в качестве моделей-

претендентов различные суперпозиции свободных переменных. Рассмотрим условия при ко-

торых суперпозиции являются допустимыми. Функции gv ∈ G проиндексированы числами v ∈
V = {1, ..., V }. Задано отображение ι : VR → A. Элементы Aι ∈ A — всевозможные сочетания

с повторениями из V по K, где K = 1, . . . , R. Мощность множества A равна

|A| =
R∑

K=1

C̄V
K =

R∑

K=1

(K + V − 1)!

(K − 1)!V !
,

где C̄ — число сочетаний с повторениями.

Элементы набора Aι = {aι(k)} проиндексированы числами k = 1, . . . , Kι. Так как a ∈ V,

элементы aι(k) однозначно соответствуют функциям gv из G. Каждому набору Aι поставим

в соответствие набор матриц инцидентности {ρi(Aι)}, i ∈ N. Индекс i матрицы ρ задает

уникальную суперпозицию fi функций g из G; обозначим ρi = ρi(Aι). Число элементов этой

суперпозиции равно Kι. Матрица инцидентности

ρi : {1, . . . , Kι} × {1, . . . , Kι} → {0, 1}

задает орграф и суперпозицию функций fi нескольких аргументов. Суперпозиция fi назы-

вается допустимой, если выполнены следующие условия.

1. Орграф ρi является ациклическим.

2. Орграф является односвязным без изолированных вершин, то есть справедливо равенство

Kι∑

k=1

Kι∑

l=1

ρi(l, k) =

Kι∑

k=1

s(aι(k)),

где s = s(v) — число аргументов функции gv. Число единиц в орграфе ρi равно суммар-

ному числу аргументов в суперпозиции fi.

3. Число аргументов каждого элемента суперпозиции должно совпадать с числом аргумен-

тов соответствующей порождающей функции

Kι∑

l=1

ρi(l, k) = s(aι(k)), для всех k = 1, . . . , Kι.

Число вершин орграфа, смежных вершине с номером k, есть число s(aι(k)) аргументов

функции gv при v = aι(k).
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2.1.3. Порождение произвольных суперпозиций

Опишем алгоритм, порождающий произвольную суперпозицию конечной глубины за ко-

нечное число шагов. Глубина суперпозиции f — максимальная глубина дерева Γf .

Пусть дано множество примитивных функций G = {g1, . . . , gl} и множество свободных

переменных X = {x1, . . . , xn}. Для удобства будем исходить из предположения, что множе-

ство G состоит только из унарных и бинарных функций, и разделим его соответствующим

образом на два подмножества: G = Gb ∪ Gu | Gb = {gb1, . . . , gbk}, Gu = {gu1, . . . , gul}, где

Gb — множество всех бинарных функций, а Gu — множество всех унарных функций из G.

Потребуем также наличия id в Gb.

Алгоритм итеративного порождения суперпозиций.

1. Перед первым шагом зададим начальные значения множества F0 и вспомогательного ин-

дексного множества I, служащего для запоминания, на какой итерации впервые встречена

каждая суперпозиция:

F0 = X,

I = {(x, 0) | x ∈ X}.

2. Для множества Fi построим вспомогательное множество Ui, состоящее из суперпозиций,

полученных в результате применения функций gu ∈ Gu к элементам Fi:

Ui = {gu ◦ f | gu ∈ Gu, f ∈ Fi}.

3. Аналогичным образом построим вспомогательное множество Bi для бинарных функций

gb ∈ Gb:

Bi = {gb ◦ (f, h) | gb ∈ Gb, f, h ∈ Fi}.

4. Обозначим Fi+1 = Fi ∪ Ui ∪Bi.

5. Для каждой суперпозиции f из Fi+1 добавим пару (f, i + 1) в множество If , если супер-

позиция f еще там не присутствует.

6. Перейдем к следующей итерации, п. 2.

Тогда F = ∪∞
i=0Fi — множество всех возможных суперпозиций конечной длины, которые

можно построить из данного множества примитивных функций.

Вспомогательное множество I позволяет запоминать, на какой итерации впервые встре-

чается каждая суперпозиция. Это необходимо, так как каждая суперпозиция, впервые по-

рожденная на i-ой итерации, будет порождена также и на любой итерации после i. Одной

из возможностей избежать необходимости в этом множестве является построение Fi+1 как

Fi+1 = Ui ∪Bi (без Fi), а множества Ui и Bi строить следующим образом:

Ui = {gu ◦ f | gu ∈ Gu, f ∈ ∪ij=0Fj},

Bi = {gb ◦ (f, h) | gb ∈ Gb, f, h ∈ ∪ij=0Fj}.
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Алгоритм очевидным образом обобщается на случай, когда множество G содержит функ-

ции произвольной (но конечной) арности. Действительно, для такого обобщения достаточно

строить аналогичным образом вспомогательные множества для этих функций, а именно: для

множества функций Gn арности n построим вспомогательное множество Hn
i вида:

Hn
i = {g ◦ (f1, f2, . . . , fn) | g ∈ Gn, fj ∈ Fi}.

В этих обозначениях Ui ≡ H1
i , а Bi ≡ H2

i .

Тогда множество Fi+1 = Fi∪nmax

n=0 Hn
i , где nmax — максимальное значение арности функций

из G.

Теорема 3. Вышеописанный алгоритм действительно породит любую конечную суперпо-

зицию за конечное число шагов.

Действительно, найдем номер итерации, на котором будет порождена некоторая конечная

суперпозиция f . Для этого, пронумеруем вершины графа Γf по следующим правилам:

1) если это вершина со свободной переменной, то она имеет номер 0;

2) если вершина V соответствует унарной функции, то она имеет номер i+ 1, где i — номер

дочерней для этой функции вершины;

3) если вершина V соответствует бинарной функции, то она имеет номер i + 1, где i =

max(l, r), а l и r — номера, соответственно, первой и второй дочерней вершины.

Номер вершины, соответствующей корню графа, будет номером итерации, на которой полу-

чена суперпозиция f . Иначе, для любой суперпозиции мы можем указать конкретный номер

итерации, на котором она будет получена.

В предложенных ранее методах построения суперпозиций [402] требовалась отдельная

проверка отсутствия частично-рекурсивных суперпозиций вида f(x, y) = g(f(x, y), x, y) в

ходе итеративного порождения. В вышеописанном алгоритме такие суперпозиции не могут

возникнуть по построению.

2.1.4. Суперпозиции с дополнительными параметрами

При задании некоторых классов моделей (например, нейронных сетей) состоящих из по-

рождающих функций, не включающих параметры, предлагается включать параметры w

непосредственно в модель f(w,x) в процедуре индуктивного порождения. Пусть порожда-

ющие функции не имеют параметров. Модифицируем алгоритм порождения произвольных

суперпозиций следующим образом:

Ui = gu ◦ (αf + β),

Bi = gb ◦ (αf + β, ψh+ φ).

Здесь параметры α, β зависят только от комбинации gu, f (или gb, f, h для α, β, ψ, φ), индексы

параметров опущены. Каждая суперпозиция из предшествующих итераций входит в следую-

щие, будучи умноженной на некоторой коэффициент и с добавленной константой. При таком
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включении параметров w = [α, β, . . . , ψ, φ]T мощность полученного множества суперпозиций

и свойства порождающего алгоритма остаются неизменными.

Этот алгоритм, как и предыдущий, может быть обобщен на случай порождающих функ-

ций произвольного конечного числа аргументов.

2.1.5. Порождение обобщенно-линейных моделей

Линейные модели

f(w,x) = wTx =
n∑

j=1

wjxj =
∑

j∈A
wjxj , где A ⊆ J = {1, . . . , n}

порождаются путем перебора всех наборов слагаемых wjxj при ограничении на их число.

Так как при нулевом значении параметра wj = 0 соответствующее слагаемое не учитывается

в модели, то алгоритм порождения моделей можно представить в следующем виде. Пусть

модель

f(w,x) = α1w1x1 + α2w2x2 + · · ·+ αnwnxn.

Структурный параметр αj не является частью модели и может принимать значение из мно-

жества {0, 1}. Для получения класса линейных моделей Flin, имеющих не более n слагаемых

необходимо перебрать все значения вектора α:

α1 α2 . . . αn

1 0 . . . 0

0 1 . . . 0

. . . . . . . . . . . .

1 1 . . . 1

.

Всего в классе 2n−1 модель. Таким образом класс моделей Flin = {fA|fA = wT

AxAj} задается

всеми наборами индексов A ⊆ J . В векторных обозначениях f = XAwA.

sin

times

x1 x2

18

2

1 1

[0, 1] [2, 4]

[0, 4]

Order of Non-linearity = 18

Expr. Complexity = 1 + 1 + 3 + 4 = 9

Рис. 16. Вычисление порядка нелинейности для модели, содержащей две свободных

переменных.
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2.1.6. Структурная сложность суперпозиций

Понятние структурной сложности вводится с целью построения процедур индуктивного

порождения суперпозиций. Эта сложность не включает никаких сведений о выборке. Напри-

мер, структурной сложность можно определить как количество вершин в дереве или высота

дерева, соответствующего суперпозиции. Ниже в качестве структурной рассматривается сум-

му вершин всех поддеревьев заданного дерева (см. рис. 18). Такая мера сложности делает

более предпочтительными те деревья у которых при том же количестве вершин число ветвей

больше. В [259] доказана теорема, упрощающая вычисление структурной сложности: для

структурной сложности φ верна формула φ = η + s + π, где η — длина обхода дерева начи-

ная с самой левой листовой вершины, π — длина обхода дерева, полученного из исходного

выкидыванием листовых вершин, s — число вершин дерева.

T1 T2 T3

/ / 1

sq sq x x

x x

12

2 2

1 1

6

1 1

0

Рис. 17. Индуктивное вычисление порядка нелинейности.

2.1.7. Число суперпозиций ограниченной сложности

Оценим число суперпозиций, получаемых после каждой итерации алгоритма индуктив-

ного порождения, описанного в разделе 2.1.3.. Рассмотрим n независимых переменных. Мощ-

ность множества G представим как мощности его подмножеств функций соответствующей

арности: |G1| = l1, |G2| = l2, . . . , |Gp| = lp. На нулевой итерации порождается P0 = n суперпо-

зиций. На первой итерации порождается

P1 = l1n + l2n
2 + · · ·+ lnn

p =

p
∑

i=1

liP
i
0

суперпозиций. Общее число суперпозиций после первой итерации —

P̂1 = P1 + P0 =

p
∑

i=1

liP
i
0 + P0.

Cуперпозиции, порожденные на k-ой итерации, будут также порождены и на любой следу-

ющей после k й. Поэтому обзее число суперпозиций после второй итерации будет равно

P̂2 =

p
∑

i=1

liP̂
i
1.
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Рис. 18. Вычисление сложности суперпозиции.

После k-ой итерации будет порождено

P̂k =

p
∑

j=1

liP̂
i
k−1

суперпозиций. Оценим порядок роста количества функций, порожденных после k-ой итера-

ции.

Теорема 4 (Сологуб). Пусть в множестве порождающих функций G содержится lp функ-

ций арности p > 1 и ни одной функции арности p+k | k > 0, и имеется n > 1 независимых

переменных. Тогда справедлива следующая оценка количества суперпозиций, порожденных

алгоритмом A после k-ой итерации:

|Fk| = O(l
∑k−1

i=0
pi

p np
k

).

Доказательство. Оценим сначала порядок роста для случая, когда есть лишь одна m-арная

функция и n свободных переменных. После первой итерации алгоритма будет порождено

nm + n суперпозиций. После второй — (nm + n)m + nm + n, что можно оценить как (nm)m =

nm
2

. После k-ой итерации количество суперпозиций можно оценить как nm
k

. Для оценки

скорости роста количества порожденных суперпозиций можно учитывать только функции с

наибольшей арностью.

Рассмотрим случай, когда имеется не одна функция арности m, а lm таких функций.

Тогда на первой итерации порождается lmn
m + n суперпозиций, на второй —

lm(lmn
m + n)m + lmn

m + n ≈ lm+1
m nm

2

,

на третьей, с учетом этого приближения —

lm(l
m+1
m nm

2

)m = lml
m(m+1)
m nm

3

= lm
2+m+1

m nm
3

.

Скорость роста количества порожденных суперпозиций оценим как

|Fk| = O(l
∑k−1

i=0
mi

m nm
k

).
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Таким образом, получаем указанную оценку в случае, когда в множестве G содержится lp

функций арности p и ни одной функции арности p+ k | k > 0.

2.2. Порождение суперпозиций

2.2.1. Стохастическое порождение суперпозиций

Пусть дана регрессионная выборка

D = {(xi, yi) | i ∈ {1, . . . , N},xi ∈ X ⊂ Rn, yi ∈ Y ⊂ R},

где N — объем регресионной выборки (число объектов), xi — вектор значений независимых

переменных i-ого объекта, yi — значение зависимой переменной у i-ого объекта, X — множе-

ство значений независимых переменных, лежащее в Rn, Y — множество значений зависимой

переменной.

Требуется выбрать параметрическую функцию f : Ω × X → R из порождаемого мно-

жества F = {fr}, где Ω — пространство параметров, доставляющую минимум некоторому

функционалу ошибки, определяемому ниже.

То есть, для множества всех суперпозиций

F = {fr | fr : (w,x) 7→ y ∈ Y, r ∈ N},

требуется найти такой индекс r̂, что функция fr среди всех f ∈ F доставляет минимум

функционалу качества S при данной регрессионной выборке D:

r̂ = argmin
r∈N

S(fr | ω̂r,D), (73)

где ω̂r — оптимальный вектор параметров функции fr для каждой f ∈ F при данной регрес-

сионной выборке D:

ω̂r = argmin
w∈Ω

S(w | fr,D). (74)

В качестве функции ошибки S используется сумма квадратов регрессионных остатков:

S(w, f,D) =

N∑

i=1

(yi − f(w,xi))
2, при (xi, yi) ∈ D. (75)

Несмотря на то, что построенный ранее итеративный алгоритм A порождения суперпо-

зиций позволяет получить за конечное число шагов произвольную суперпозицию, для прак-

тических применений он непригоден в связи с чрезмерной вычислительной сложностью, как

и любой алгоритм, реализующий полный перебор. Вместо него предлагается использовать

стохастические алгоритмы и ряд эвристик, позволяющих на практике получать за прием-

лемое время результаты, удовлетворяющие заранее заданным условиям. В данном разделе

описывается практически реализуемый вариант алгоритма A, который и использован в вы-

числительном эксперименте.

Сначала опишем вспомогательный алгоритм случайного порождения суперпозиции:

Алгоритм случайного порождения суперпозиции RF . Заданы
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1) набор пороговых значений 0 < ξ1 < ξ2 < ξ3 < 1.

2) максимальная глубина порождаемой суперпозиции Td.

Алгоритм работает следующим образом. Генерируется случайное число ξ на интервале

(0; 1), и рассматриваются следующие случаи:

1) ξ ≤ ξ1: результатом алгоритма является некоторая случайно выбранная свободная пере-

менная.

2) ξ1 < ξ ≤ ξ2: результатом алгоритма является числовой параметр.

3) ξ2 < ξ ≤ ξ3: результатом алгоритма является некоторая случайно выбранная унарная

функция, для определения аргумента которой данный алгоритм рекурсивно запускается

еще раз.

4) ξ3 < ξ: результатом алгоритма является некоторая случайно выбранная бинарная функ-

ция, аргументы которой порождаются аналогичным образом.

Опишем теперь итеративный алгоритм стохастического порождения суперпозиций. Заданы

1) множество порождающих функций G, состоящее только из унарных и бинарных функций;

2) регрессионная выборка D;

3) параметры Nmax, Imax, γmut, γcross — максимальное число одновременно рассматриваемых

суперпозиций; максимальное число итераций алгоритма; доля суперпозиций, подвержен-

ных случайной замене узлов их деревьев; доля суперпозиций, для которых выполняется

случайный обмен поддеревьями;

4) прочие параметры, используемые в алгоритме 2.2.1.

Выполнение алгоритма.

1. Инициализируется упорядоченный набор Xf суперпозиций. А именно, порождается Nmax

суперпозиций алгоритмом 2.2.1..

2. Оптимизируются параметры w суперпозиций из Xf алгоритмом Левенберга-Марквардта.

3. Вычисляется значение Qf для каждой еще не оцененной суперпозиции f из Xf : для нее

рассчитывается значение функции ошибки Sf согласно (75) на выборке D, и ставится

в соответствие значение Qf . Для суперпозиций, при вычислении Qf которых была хотя

бы раз получена ошибка вычислений из-за несовпадения областей определений и значений,

принимается Qf = −∞.

4. Набор суперпозиций Xf сортируется согласно их приспособленности.

5. Наименее приспособленные суперпозиции удаляются из массива Xf до тех пор, пока его

размер не станет равен Nmax.
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6. Отбирается некоторая часть γmut наименее приспособленных суперпозиций из Xf . У этой

части происходит случайная замена одной функции или свободной переменной на другую:

генерируются две случайные величины, одна из которых служит для выбора вершины де-

рева Γf , которую предстоит изменить, а другая — для выбора нового элемента для этой

вершины. Замена такова, чтобы сохранилась структура суперпозиции, а именно: в слу-

чае замены функции сохраняется арность, а свободная переменная заменяется только на

другую свободную переменную. При этом исходные суперпозиции сохраняются в массиве

Xf .

7. Повторяются шаги 3− 4.

8. Производится случайный обмен поддеревьями у γcross наиболее приспособленных суперпо-

зиций. Вершины, соответствующие этим поддеревьям, выбираются случайным образом.

При этом исходные суперпозиции сохраняются в массиве Xf .

9. Повторяются шаги 2− 4.

10. Проверяются условия останова: если либо число итераций больше Imax, либо в массиве

Xf есть хотя бы одна суперпозиция с приспособленностью больше, чем Q̂, то алгоритм

останавливается, и результатом является наиболее приспособленная суперпозиция, иначе

осуществляется переход к шагу 2.

Заметим, что выборка D не делится на обучающую и контрольную — контроль качества

оставляется различным стандартным методикам типа скользящего контроля.

2.2.2. Стохастическая процедура порождения модели

Стохастическая процедура порождения модели. Процедура из итеративно повторяе-

мых шагов. Из множества моделей-претендентов отбирается заданное число лучших моделей.

C помощью операций скрещивания и модификации происходит порождение новых моделей.

Процедура повторяется, пока не выполнится условие останова.

Используем переменную выбора признака — вектор c = (c1, . . . , cn). Алгоритм содержит

следующие параметры для отбора моделей: F — число лучших моделей в популяции, F1 —

число моделей для скрещивания, P2 — вероятность выбора модели для мутации. Началь-

ный набор моделей выбирается случайным образом. Итеративно выполняются следующие

операции.

1. Отбор: согласно критерию (36) при X def
= C выбирается F лучших моделей.

2. Случайным образом выбираются F1 моделей для скрещивания и модификации.

3. Скрещивание: операция, при которой из двух моделей порождается две новые. Выбранные

модели случайным образом разбиваются на пары. В каждой паре переменные выбора cq =

(cq1, . . . , c
q
n) и cp = (cp1, . . . , c

p
n) разбиваются точкой скрещивания, выбираемой случайно из

множества {1, . . . , n}, на две части. Происходит обмен элементов векторов cp и cp:
{

(cq1, . . . , c
q
k, c

q
k+1, . . . , c

q
n)

(cp1, . . . , c
p
k, c

p
k+1, . . . , c

p
n)

7→
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7→
{

(cq1, . . . , c
q
k, c

p
k+1, . . . , c

p
n)

(cp1, . . . , c
p
k, c

q
k+1, . . . , c

q
n)

.

4. Каждая модель из полученного множества с вероятностью P2 подвергается модификации:

случайным образом из множества {1, . . . , n} выбирается индекс переменной выбора j.

В результате этой операции значение компоненты cj меняется на противоположное (если

был выбран элемент cj = 0, то после операции он меняет свое значение на 1 и наоборот).

После операций 3 и 4 новые модели настраиваются исходя из условия минимизации крите-

рия (36) при X def
= L. Вышеперечисленные шаги выполняются заданное число раз.

2.2.3. Порождающие функции и классы моделей

В качестве примера множества порождающих функций приведем набор, показанный в

таблице 7. Здесь при задании функций приняты следующие обозначения:

#arg — число аргументов функции,

#vec — число элементов вектор-функции,

comm — аргументы коммутируют,

#b – число элементов вектора параметров,

R+ — множество неотрицательных действительных чисел,

U — неупорядоченное конечное множество, «номинальная» шкала,

N∗ — линейно-упорядоченное конечное множество, «порядковая» шкала,

B — множество {0, 1}.

2.2.4. Порождаемые модели

Ниже приведены модели, которые используются при регрессионном анализе изме-

ряемых данных. Параметры моделей обозначены латинскими и греческими буквами:

{a, b, c, ..., χ, ψ, ω}, x, y — свободная и зависимая переменные. Присоединение параметров-

скаляров для их представления в виде вектора w выполняется в том порядке, в котором они

появляются, если представить формулу регрессионной модели в виде строки.

Линейные модели

1. Полином y =
∑n

i=1 aix
i−1 и его частный случай прямая y = ax+ b. Следует отмечать, что

полиномы высоких степеней крайне неустойчивы и могут неадекватно описывать измеря-

емые данные [64].

2. Гипербола y = k/x, а также прочие нелинейные функции с линейно-входящими парамет-

рами: тригонометрические функции sin(x), arcsin(x), гиперболический синус sh(x), кор-

невые
√
x и обратно-корневые x−

1

2 функции. Эти функции используются в финансовом

анализе и других приложениях.
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Нелинейные модели

1. Экспонента y = ebx, экспонента с линейным коэффициентом y = aebx. Распространена

двухкомпонентная экспоненциальная модель y = aebx + cedx. Модель может быть ис-

пользована, в частности, если коэффициент изменения величины свободной переменной

пропорционален ее начальной величине.

2. Монотонные модели:

1) очень быстрый рост y = exp(a+ bx), параметр b > 0,

2) быстрый степенной рост y = exp(ab ln(x)), параметр b > 1,

3) медленный рост y = exp(ab ln(x)), параметр 0 < b < 1,

4) очень медленный рост y = + b ln(x), параметр b > 0,

5) медленная стабилизация y = + b/x, параметр b 6= 0, свободная переменная x 6= 0,

6) быстрая стабилизация y = a+ b exp(−x), параметр b 6= 0,

7) логистическая кривая y = 1/(a+ b exp(−x)), параметр b > 0.

3. Ряд Фурье y = a0 +
∑n

i=1

(
ai cos(iωx) + bi sin(iωx)

)
. Используется для описания периоди-

ческих сигналов.

4. Сумма гауссианов y =
∑n

i=1 ai exp(− (x−bi)2
ci

). Используется для аппроксимации пиков. Ко-

эффициент ai является амплитудой, bi — смещением, коэффициент ci задает ширину пика.

Всего в сумме может быть до n пиков.

5. Моном y = xb, моном с линейным коэффициентом y = axb. Используется при моделирова-

нии размерности физических или химических величин. Например, количество некоторого

реагирующего в химической реакции вещества считается пропорциональным концентра-

ции этого вещества, возведенного в некоторую степень.

6. Рациональный полином y =
∑n

i=0 aix
i

xm+
∑m−1

i=0
bixi

. Принято считать коэффициент перед xm едини-

цей. Например, если m = n, такое соглашение позволит получить уникальные числитель

и знаменатель.

7. Сумма синусов y =
∑n

i=1 ai sin(bix + ci). Здесь ai — амплитуда, bi — частота, ci — фаза

некоторого периодического процесса.

8. Двухпараметрическое распределение Вейбулла y = abxb−1 exp(−axb). Параметр a является

масштабирующим, а параметр b определяет форму кривой. Трехпараметрическое распре-

деление Вейбулла y = abxb−1 exp(−a(x− c)b) с параметром смещения c.

9. Логистическая функция (1 + e−n)−1 используются в нейронных сетях, например в MLP

в качестве функций активации.

10. Тангенциальная сигмоида y = 2(1 + e−2n)−1 − 1 также используются в качестве функций

активации.

Этот список не является исчерпывающим. Выбираемая регрессионная модель зависит

прежде всего от экспертных предположений относительно моделируемого явления.
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Таблица 7. Набор порождающих функций для задач логистической регрессии.

Название dom #arg cod # vec comm #b

Nominal to binary U 1 B 1–4 – –

Ordinal to binary N∗ 1 B 1–4 – –

Linear to linear segments R 1 [0, 1] 1–4 – 1–4

Linear segments to binary R 1 B 1–4 – 1–4

Get one column of n-matrix B 1–4 B 1 – 1

Conjunction B 2–6 B 1 Да –n

Dijsunction B 2–6 B 1 Да –

Negate binary B 1 B 1 – –

Logarithm R+ 1 R 1 – –

Hyperbolic tangent sigmiod R 1 (−1, 1) 1 – –

Logistic sigmoid R 1 (0, 1) 1 – –

Sum R 2–3 R 1 Да –

Divfference R 2 R 1 Нет –

Multiplication1 R 2–3 R 1 Да –

Multiplication2 B 2–3 B 1 Да –

Division R \ {0} 2 R 1 Нет –

Inverse R \ {0} 1 R 1 – –

Polynomial transformation R 1 R 1 – >0

Radial basis function R 1 R 1 – >0

Rational x
√
x R+ 1 R 1 – –

2.3. Упрощение суперпозиций

2.3.1. Порождение допустимых суперпозиций

Алгоритм, описанный в 2.1.3. позволяет получить все возможные суперпозиции, однако,

не все они будут пригодны в практических приложениях: например, выражение lnx имеет

смысл только при x > 0, а x
0

не имеет смысла вообще никогда. Выражения типа x
sinx

име-

ют смысл только при x 6= πk. Используем веденное ранее понятие множества допустимых

суперпозиций.

Одним из способов построения только допустимых суперпозиций является модификация

предложенного алгоритма таким образом, чтобы проверять вложенность области определе-

ния и области значения соответствующих функций в ходе построения суперпозиций.

2.3.2. Изоморфные суперпозиции

Пусть дана суперпозиция f , состоящая из произвольного набора N -арных функций, сво-

бодных переменных и констант. Пусть также дан набор правил-аксиом, указывающих на

существующие соотношения между элементарными функциями. Требуется построить су-

перпозицию, изоморфную исходной и обладающую наименьшей сложностью, согласно этим

правилам.
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Здесь под изоморфизмом двух суперпозиций понимается такое эквивалентное преобра-

зование, что обе суперпозиции дают одинаковые результаты при одних и тех же значениях

свободных переменных.

Определим понятие сложности суперпозиции C(f):

Определение 11. Сложность суперпозиции f , обозначаемая C(f) — число элементарных

функций, констант и свободных переменных, каждые из которых считаются столько раз,

сколько встречаются в суперпозиции.

Например, сложность суперпозиции x+ y + y равна 5.

Введем также множество F всех возможных суперпозиций, составленных из элементар-

ных функций g ∈ G.

Исходная задача формулируется следующим образом. Для данной суперпозиции f тре-

буется найти суперпозицию f̂ , имеющую минимальную сложность среди всех суперпозиций,

изоморфных f :

f̂ = arg min
ϕ∈Ff⊂F

C(ϕ),

где Ff ⊂ F — множество всех возможных суперпозиций, изоморфных f . Множество Ff стро-

ится путем последовательного применения заданных правил, описывающих возможные со-

отношения между элементарными функциями, и являющихся правилами преобразования

суперпозиций.

2.3.3. Преобразование суперпозиций по правилам

В работе [32] предложен следующий метод преобразования суперпозиций. Условимся счи-

тать, что каждой суперпозиции f сопоставлено дерево Γf , строящееся следующим образом:

1) вершине Vi дерева Γf соответствует элементарная функция gs, s = s(i),

2) число дочерних вершин Vj у вершины Vi равно арности соответствующей функции gs,

3) порядок вершин, смежных вершине Vi, соответствует порядку аргументов соответствую-

щей функции gs(i),

4) листьям дерева Γf соответствуют свободные переменные xi.

Вычисление значения суперпозиции f в некоторой точке x = {xi} эквивалентно подстановке

соответствующих значений свободных переменных xi в дерево Γf .

Определение 12. Два дерева Γ1 и Γ2 равны тогда и только тогда, когда при любой упо-

рядоченной нумерации вершин содержимое вершин с одинаковым номером совпадает.

Определение 13. Дерево Γ является поддеревом дерева Γ′, если Γ′ содержит поддерево,

равное Γ.

Отметим важное свойство таких деревьев: каждое поддерево Γif дерева Γf , соответству-

ющее вершине Vi, также соответствует некоторой суперпозиции, являющейся составляющей

исходной суперпозиции f . Будем обозначать такую суперпозицию, соответствующую вер-

шине Vi, как fVi .
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Определение 14. Общая компонента дерева — поддерево ∆f ′ дерева Γf суперпозиции f ,

встречающееся более чем один раз.

Здесь f ′ — подвыражение в суперпозиции f , соответствующее дереву ∆f ′ .

Так как суперпозиция f и ее дерево Γf эквивалентны, общей компонентой дерева также

можно называть суперпозицию, эквивалентную поддереву, являющемуся общей компонентой

в смысле определения 14. Например, для суперпозиции (x+2)+(x+2)+x общие компоненты:

x, 2, x+ 2.

Определение 15. Наибольшая общая компонента дерева — такая общая компонента ∆̂f ′ ,

что не существует другой общей компоненты, включающей данную.

Для вышеупомянутой суперпозиции (x+2)+ (x+2)+ x наибольшей общей компонентой

является поддерево, соответствующее суперпозиции x+ 2.

Наибольших общих компонент может быть несколько. Например, для суперпозиции (x+2)+

(x+2)+2 sin(x+y) cos(x+y) наибольшими общими компонентами будут подвыражения x+2

и x+ y. Обозначим множество всех наибольших общих компонент графа Γf суперпозиции f

как ∆̃f .

Введем понятие унифицированного графа суперпозиции f :

Определение 16. Унифицированный граф Γ̂f суперпозиции f — направленный ацикличе-

ский граф, полученный из дерева Γf следующим итеративным алгоритмом:

1. Граф Γ̃f на первом шаге равен Γf .

2. Для графа Γ̃f находятся все наибольшие общие компоненты ∆̂f ′.

3. Если таких компонент не найдено, то полученный граф Γ̃f объявляется искомым графом

Γ̂f , и алгоритм завершается.

4. Иначе выбирается компонента ∆̂f ′ с наибольшей сложностью C(f ′). Если несколько

наибольших общих компонент имеют максимальную сложность, то выбирается первая

из них согласно некоторому фиксированному порядку на множестве суперпозиций.

5. Выбранная компонента остается в единственном экземпляре: удаляются все вершины

Vi такие, что fVi = f ′, кроме одной вершины V ′
i , и ребра, входящие в удаленные вершины,

изменяются таким образом, чтобы они входили в V ′
i .

То есть, в графе Γ̂f каждая наибольшая общая компонента ∆̂f ′ присутствует не более

одного раза.

Таким образом, Γ̂f отличается от Γf тем, что в одну вершину могут входить несколь-

ко ребер, причем в том и только в том случае, если эта вершина соответствует поддереву,

являющемуся некоторой наибольшей общей компонентой дерева Γf .

Теорема 5. Граф Γ̂f по данному дереву Γf строится единственным образом.

Доказательство. Утверждение напрямую следует из метода построения Γ̂f , если учесть,

что не важно, какая именно вершина не была удалена на шаге 5, так как после указанного

преобразования графа все такие вершины равнозначны.
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Теорема 6. Дерево Γf по данному графу Γ̂f восстанавливается единственным образом.

Доказательство. Для того, чтобы построить дерево Γf по данному графу Γ̂f , достаточно

найти в Γ̂f все вершины Vi, имеющие более одной родительской вершины Vj. Каждой такой

вершине Vi соответствует некоторая суперпозиция fVi и ее подграф Γif . Добавим в граф Γf

такое минимальное число подграфов, равных Γif , чтобы каждая вершина из Vj указывала в

свой собственный подграф, равный Γif , то есть, чтобы множества вершин дочерних подгра-

фов не пересекались. Так как Γ̂f построен путем выделения и объединения общих компонент

дерева Γf , то полученный в результате указанной процедуры граф будет являться деревом,

причем, эквивалентным Γf .

Из этих двух утверждений непосредственно следует следующая теорема:

Теорема 7. Между Γ̂f и Γf существует взаимно однозначное преобразование.

Эта теорема позволяет говорить об эквивалентности Γf и Γ̂f и о том, что взаимно одно-

значные преобразования для Γ̂f являются также и взаимно однозначными преобразованиями

для суперпозиции f .

Работа алгоритма преобразования суперпозиций по правилам состоит из двух этапов.

1. Находятся наибольшие равные в смысле определения 12 поддеревья, и дерево Γf супер-

позиции f преобразуется в соответствующий унифицированный граф Γ̂f .

2. К полученному графу Γ̂f применяются правила преобразования, уменьшающие его слож-

ность, до тех пор, пока правила возможно применять.

Заметим, что, например, правило, описывающее вынесение общего множителя за скобки,

заменяющее ax+ bx на (a+ b)x, не применимо к суперпозиции типа nx+x в описанном выше

виде. Шаблон Rst у такого правила представляет умножение константы на переменную, в

то время как в суперпозиции nx+ x второй аргумент — константа.

Чтобы избежать подобной ситуации, предлагается указывать каждое подобное соотно-

шение не в виде правил переписывания графа, а в виде отношений эквивалентности, что

позволяет сократить количество экспертно заданных правил.

2.4. Структурное обучение при порождении суперпозиций

Предложен метод прогнозирования структуры суперпозиции регрессионной модели, опи-

сывающей предъявленную выборку оптимальным образом. Алгоритмы выбора моделей име-

ют значительную вычислительную сложность в связи с необходимостью перебора большого

числа моделей. Основываясь на собранных прецедентах выбора моделей, адекватно описы-

вающих выборки, предлагается построить алгоритм прогноза структуры таких моделей.

2.4.1. Постановка задачи структурного обучения

Задан набор D = {(Dk, fk)}, состоящий из регрессионных выборок D. Каждая пара

Dk = (Xk,yk) состоит из (m × n)-матрицы X и (m × 1)-вектора y. Для каждой регрессион-

ной выборки Dk известна модель fk, оптимально приближающая данную выборку. Задано
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множество G порождающих функций. Для каждой функции g : R× . . .×R → R из набора G
определены её арность v = v(g), области определения и значений: dom(g), cod(g). Известно

множество F суперпозиций порождающих функций, при этом заданы правила индуктивного

порождения функции f ∈ F:

F = {fs | fs : (ŵk,X) 7→ y, s ∈ N}.

Каждой выборкe D требуется поставить в соответствие оптимальную модель f : W×X → R

из порождаемого множества моделей F = {fs}, где W — пространство параметров, достав-

ляющую минимум заданной функции ошибки, определяемой ниже.

Другими словами, для множества моделей F требуется найти такой индекс ŝ, что функция

fŝ среди всех f ∈ F доставляет минимум функции ошибки S при фиксированной регресси-

онной выборке D:

ŝ = argmin
s∈N

S(fs | ŵk,Dk), (76)

где ŵk — оптимальный вектор параметров модели fs для каждой f ∈ F при данной регрес-

сионной выборке D:

ŵk = arg min
w∈W

S(ŵ | fs,Dk). (77)

В качестве функции ошибки S используется сумма квадратов регрессионных остатков 75.

2.4.2. Способ задания структуры регрессионной модели

Каждой суперпозиции f ставится в соответствие дерево Γf вида (рис.19), строящееся по

следующим правилам:

1) корнем дерева является специальный символ “*”, имеющий одну дочернюю вершину,

2) в остальных вершинах Vi дерева Γf находятся соответствующие порождающие функции

gr(i) из набора G,

3) число дочерних вершин Vj у некоторой вершины Vi равно арности соответствующей функ-

ции gr: v = v(gr),

4) область определения порождающей функции дочерней вершины Vj содержит область зна-

чений функции родительской вершины Vi: dom(gr(i)) ⊃ cod(gr(j)),

5) в листьях дерева Γf находятся свободные переменные xi.

Каждому дереву Γf ставится в соответствие бинарная матрица Z (табл.8) размера

(1 + l) × (l + n), где l – число элементарных функций набора G, n — число свободных пе-

ременных xi. Элементы матрицы Z отвечают за наличие ребра между двумя вершинами в

дереве. При этом строки матрицы отвечают только за те вершины, которые могут быть роди-

тельскими: вершина дерева “ * ” и порождающие функции gs. Столбцы матрицы отвечают

за потенциальные дочерние вершины: порождающие функции gr и свободные переменные

xi. Таким образом, матрица Z состоит из квадратного блока, отвечающего за набор порож-

дающих функций, добавленной сверху строки, отвечающей за вершину дерева “ * ”, и n

добавленных справа столбцов, отвечающих за свободные переменные xi. На матрицу Z по

построению накладываются следующие ограничения:
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Рис. 19. Пример дерева суперпозиции функций.

sum times ln sin x

∗ 1 0 0 0 0

sum 0 1 1 0 0

times 0 0 0 1 1

ln 0 0 0 0 1

sin 0 0 0 0 1

sum times ln sin x

∗ 0.7 0.1 0.1 0.1 0.2

sum 0.2 0.7 0.8 0.1 0.2

times 0.1 0.3 0 0.8 0.8

ln 0.2 0.1 0.3 0.1 0.9

sin 0.1 0.2 0.1 0 0.8

Таблица 8. Пример матрицы связей и матрицы вероятностей связей для суперпозиции

функций.
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1) в каждой строке i содержится либо количество единиц, равное арности v = v(gr(i)) эле-

ментарной функции gr(i), отвечающей за i-ый столбец матрицы, либо ноль;

2) в каждом столбце, отвечающем за порождающую функцию, может содержаться только

одна единица;

3) заполнение строк и столбцов проходит сверху–вниз и слева–направо, т.е. для записи оче-

редного ребра в матрицу выбирается самый левый и верхний из “свободных” столбцов и

строк, отвечающий тем же родительским и дочерним элементам.

Обозначим для удобства множество матриц, удовлетворяющих данным условиям как M.

2.4.3. Оценка вероятности переходов в дереве суперпозиции

Поскольку по матрице из множества M можно однозначно восстановить суперпозицию

функции, задача прогнозирования суперпозиции f сводится к поиску матрицы Zf из мно-

жества M, максимизирующей вероятность переходов в дереве суперпозиции:

Zf = argmax
Z∈M

∑

i,j

Pij × Zij , (78)

где матрица вероятностей переходов P определяется с помощью векторной логистической ре-

грессии с функцией ошибки, соответствующей гипотезе порождения данных биномиальным

распределением.

2.4.4. Решение задачи структурного обучения

Пусть с помощью векторной логистической регрессии найдена матрица вероятностей пе-

реходов Pf вида табл. 8. Ставится задача отыскания матрицы Zf из допустимого множества

матриц M, удовлетворяющей условию 78. Для этого разобьем матрицу Pf на два блока.

Блок P ′
(1+l)×l:

P ′
ij = p(gi → gj)

отвечает за вероятности переходов между порождающими функциями. Блок P ′′
(1+l)×n:

P ′′
ik = p(gi → xk)

содержит значения вероятностей перехода от порождающих функций к независимым пере-

менным. Введем понятия открытой вершины. Назовем вершину i — открытой, если она

относится к порождающей функции, и при этом существует вершина, являющаяся для вер-

шины i родительской, но у нее нет дочерних вершин:

(i ≤ l)&(∃j : (j, i) = 1)&(∄k : (i, k) = 1).

Также зададим значение K максимально допустимой сложности суперпозиции. Опишем

процедуру построения оптимального дерева Γ̂f .

1. На нулевом шаге процедуры объявляем вершину дерева открытой: i = 1.
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Рис. 20. Исходные временные ряды, порожденные различными моделями.

2. Пока количество единиц в матрице не превышает K, повторяем:

1) выбираем максимальные вероятности переходов cj = max
j=1,...,l

Pij для всех открытых

вершин i;

2) достраиваем матрицу из условия максимизации вероятности перехода: j∗ =

argmax
j
cj , (i, j∗) = 1;

3) добавляем j∗ к списку открытых вершин, если (i, j∗) ∈ P ′;

3. если количество единиц превышает K, ставим в соответствие всем открытым вершинам

независимые переменные: k∗ = argmax
k
P ′′
ik, (i, k∗) = 1 для всех i-открытых.
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дов, Ẑf

Рис. 21. Матрицы переходов в графе суперпозиции.
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Процедура может быть прервана, если множество открытых вершин пусто, но сложность

суперпозиции еще не превысила заданную максимальную сложность K — в таком случае

построенная оптимальная суперпозиция будет иметь меньшую сложность.

2.4.5. Процедура прогнозирования структуры модели

Алгоритм протестирован на выборке синтетических данных, полученных следующим об-

разом. Экспертно задан набор порождающих функций G, для каждой из которых известны

арность функции v = v(g), области определения и значений: dom(g), cod(g). По набору G
построено конечное множество суперпозиций F — библиотека функций. Экспертно заданы

значения независимых переменных X и вектор параметров модели ws. Значения зависимых

переменных заданы как

ys = fs(ws,X) + τf ,

где τf — шумовая добавка, являющаяся случайной величиной из нормального распределения.

На рис.20 изображен вид исходных моделей. В каждой строке i содержатся графики модели

fi, зашумленной независимо друг от друга 5 раз одним и тем же распределением. Таким

образом, сгенерировано множество регрессионных выборок D = {(Ds, fs)}, где Ds = (X,y).
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Рис. 22. Полученные матрицы вероятностей переходов в графе суперпозиции.

Для обучения алгоритма векторной логистической регрессии использована нейронная

сеть c двумя скрытыми слоями, имеющая на выходном слое сигмоидную функцию актива-

ции. На вход такой нейросети подается регрессионная выборка Ds = (X,y), выходом ал-

горитма является матрица вероятностей P. Далее при помощи указанной выше процеду-

ры построения оптимального дерева Γ̂f , прогнозировалась искомая структура суперпозиции
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модели. Пример работы алгоритма изображен на рис.(21a, 21b, 21c). Левая матрица соот-

ветствует исходной суперпозиции fs, средняя матрица — построенной матрице вероятностей

переходов Pf , по которой, используя предложенную процедуру, вычисляется оптимальная

прогнозируемая суперпозиция f̂s.

Для тестирования качества алгоритма использован метод LOO(Leave-One-Out), по ко-

торому множество регрессионных выборок разбивается таким образом, что в обучении ал-

горитма использованы все выборки, за исключением одной: D \ {Dk}. Контроль проведен

на одной выборке Dk, для которой по полученному алгоритму вычислено оптимальное де-

рево суперпозиции Γ̂k, построена модель f̂k, вычислены ее оптимальные параметры ŵk и

вычислено значение ошибки

S(ŵk, f̂s, fs) = ‖ y− f(wk,X) ‖2.

Результаты прогнозирования по методу LOO представлены на рис.22, отражающем по-

лученные вероятности переходов P, и рис.23, отражающем оптимальные прогнозируемые

матрицы переходов Ẑ.

Из рис.23 видно, что не во всех строках получились одинаковые матрицы переходов,

что отражает некую неустойчивость предложенного метода относительно вводимого шума

τ . Качество работы алгоритма в зависимости от размера σ дисперсии нормальной случайной

величины τ изображено на рис.24a. Видно, что при увеличении шума качество прогнозиро-

вания падает, растет ошибка S. Немонотонность графика объясняется малыми для обучения

размерами выборки. На рис.24b изображен график зависимости ошибки прогнозирования от

возмущения δw вектора параметров wk модели fk контрольной выборки

Dk = (Xk,yk),yk = f(wk,Xk) + τf .
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Рис. 23. Полученные матрицы переходов в графе суперпозиции.



90

0 0.5 1
1

1.5

2

2.5

3

(a) Зависимость ошибки S от дисперсии

шума σ

0 0.5 1

1.4

1.6

1.8

2

2.2

(b) Зависимость ошибки S от возмущения

параметров модели δw

Рис. 24. Зависимость ошибки от возмущения шума и параметров модели.

В данном случае также можно отметить увеличение ошибки S от размера возмущения δw, но

при этом качество прогнозирования остается достаточно хорошим при небольших значениях

возмущения.

Таким образом поставлена решена задача прогнозирования суперпозиции модели исход-

ных данных. Предложен алгоритм поиска оптимальной структуры модели. Качество пред-

лагаемого метода проверено на выборке синтетических данных.
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3. Сравнение элементов моделей

Процедура выбора моделей может быть организована двумя способами: прямое сравне-

ние сложности моделей из некоторого ранее порожденного множества и сравнение сложности

последовательно порождаемых моделей. Первый способ предполагает, что сложность каж-

дой модели уже известна [360]. При этом процедура прямого сравнения требует большего

количества шагов, так как необходимо оценить сложность для каждой модели из множества

допустимых моделей. Второй способ — последовательное сравнение моделей — позволяет из-

бежать вычисления оценки для всех моделей. При этом модель должна быть представима

в виде композиции отдельных ее элементов. Выбор модели при этом выполняется следую-

щим образом. Вводится критерий сравнения элементов, после чего по результатам сравнения

один или несколько элементов добавляются в модель или удаляются из модели. Предлагается

алгоритм выбора признаков или элементов, оптимизирующий структуру модели.

Этот алгоритм различается для обобщенно-линейных и нелинейных моделей. В первом

случае речь идет о выборе признаков, во втором — о выборе элементов суперпозиции. Моти-

вацией работы является тот факт, что решение практических задач восстановления регрес-

сионной зависимости требует рассмотрения большого числа порождаемых признаков или

элементов. Требуется предложить такой алгоритм выбора признаков, который за «неболь-

шое» число шагов выбрал бы набор признаков, задающий модель оптимальной сложности.

Процедура построения регрессионных моделей состоит из двух шагов. На первом ша-

ге на основе свободных переменных, результатов измерений, порождается набор признаков.

На втором шаге выбираются признаки. При выборе признаков выполняется оценка парамет-

ров модели и вычисляется ее сложность.

Развитие методов выбора признаков в регрессионном анализе имеет насыщенную исто-

рию. Широкое распространение получил шаговый метод, впервые предложенный в 1960 г.

М.А.Эфроимсоном [185]. Он состоит из процедур поочередного добавления и удаления при-

знаков. На каждом шаге признаки проверяются на возможность добавления признака в мо-

дель или возможность удаления из модели. Выбираются признаки, которые вносят наиболь-

ший вклад в зависимую переменную. Выбор выполняется процедурой, состоящей из серии

F -тестов. Для выбора оптимального набора признаков используется критерий Акаике, Бай-

есовский критерий [117, 237] или критерий Маллоуза [300].

В 1963 г. А.И.Тихонов ввел понятие регуляризации — дополнительного ограничения на

задачу [49]. В работах [107, 16] введено понятие класса регуляризуемых некорректно постав-

ленных задач и предложен общий метод решения таких задач, названный методом регуля-

ризации. Работы А.И.Тихонова были опубликованы на западе только в 1977 г. В 1970 г.

А. Хоэрл и Р. Кеннард предложили метод гребневой регрессии, в котором использовалась

регуляризация [239]. Было введено дополнительное регуляризующее слагаемое в минимизи-

руемую функцию, что дало улучшение устойчивости решения [152, 108].

В первом издании книги Н.Дрейпера 1966 г. [182] приведен ступенчатый алгоритм вы-

бора признаков. На каждой итерации выбирается признак, имеющий наибольшую проек-

цию на вектор зависимых переменных, после чего делается небольшой шаг в направлении
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решения [232]. Среди полученных на каждом шаге моделей находится оптимальная, то есть

выбираются признаки.

В 1971 г. А. Г.Ивахненко начал разрабатывать семейство методов группового учета ар-

гументов [86]. Согласно его подходу, на каждом шаге происходит выбор моделей и построе-

ние на их основе более сложных моделей [295, 14, 59]. Метод позволяет сократить перебор и

выбрать признаки.

В работе Д.Холланда 1975 г. [241] рассматривается общий подход к построению адаптив-

ных систем. Любая адаптивная задача может быть описана в терминах теории эволюции.

Задача, сформулированная таким образом, может быть решена с помощью генетического

алгоритма. В основе подхода лежит теорема схем, из которой следует, что при определен-

ных условиях алгоритм дает экспоненциально быструю сходимость решения к локальному

оптимуму.

В работах С. Шена 1980 г. и 1991 г. [168, 167] рассмотрен алгоритм последовательного

добавления признаков с ортогонализацией. Отбор признаков происходит автоматически при

выборе оптимальной модели [140, 224].

Для упрощения структуры модели также используется метод оптимального прорежива-

ния, согласно которому элементы модели, оказывающие малое влияние на ошибку аппрок-

симации, можно исключить из модели без значительного ухудшения качества аппроксима-

ции [84, 98, 279]. Метод предложен в 1990 г. Я.ЛеКюном и развит Б.Хассиби. Он основан на

анализе первых производных в ходе обучения градиентными методами [216, 387, 231, 66, 216].

Еще один метод регуляризации, Лассо, был предложен Р.Тибширани в 1996 г. [384]. В нем

вводится ограничение на L1-норму вектора параметров модели, что приводит к обнулению

части параметров модели и улучшению устойчивости решения.

В 2002 г. Б.Эфрон, Т.Хасти, И.Джонстон и Р.Тибширани предложили метод наимень-

ших углов (Least Angle Regression) [184]. Алгоритм заключается в последовательном добав-

лении признаков. На каждом шаге признак выбирается таким образом, чтобы вектор регрес-

сионных остатков был равноуголен уже добавленным в модель признакам [276]. Обобщение

метода на многоиндексную матрицу плана можно найти в [315].

Перечислим наиболее часто используемые методы выбора признаков:

1) полный перебор моделей [14];

2) генетический алгоритм [212];

3) метод группового учета аргументов [295, 14, 3];

4) шаговая регрессия [182, 185, 337];

5) гребневая регрессия [182];

6) алгоритм Лассо [384];

7) ступенчатая регрессия [182];

8) последовательное добавление признаков с ортогонализацией [168, 167];
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9) метод наименьших углов [184];

10) оптимальное прореживание в линейной регрессии [84, 98].

3.1. Методы эмпирического выбора признаков

3.1.1. Регуляризующие методы

Гребневая регрессия. Метод заключается во введении дополнительного регуляризующе-

го слагаемого в минимизируемую функцию ошибок. Этот метод не является методом выбора

признаков, так как не указывает, какие признаки следует исключить из модели. Плохая обу-

словленность матрицы XTX приводит к неустойчивости решения ŵ уравнения линейной

регрессии (38). Регуляризация позволяет уменьшить число обусловленности матрицы XTX

и получить более устойчивое решение.

При регуляризации параметры модели находятся из условия минимизации функции

w∗ = arg min
w∈W

S(w), (79)

S(w) =
(
‖y−Xw‖2 + τ‖w‖2

)
.

Решением задачи минимизации является вектор ŵ = (XTX+ τIn)
−1XTy.

Увеличение параметра τ приводит к уменьшению нормы вектора параметров модели и по-

вышению эффективной размерности пространства признаков [233]. Действительно, рассмот-

рим сингулярное разложение XTX = UΛVT. Числом обусловленности матрицы называется

отношение максимального сингулярного числа к минимальному:

κ =
λ1
λn
.

Рассмотрим число обусловленности κ регуляризованной матрицы XTX нормального урав-

нения:

κ
(
XTX+ τI

)
=
λ1 + τ

λn + τ

где λi — сингулярные числа матрицы XTX. Чем больше τ , тем устойчивее решение задачи.

С увеличением коэффициента регуляризации τ уменьшается число обусловленности матри-

цы XTX. Возможен другой способ регуляризации

XTX 7→ (1− τ)XTX+ τdiag(XTX)In.

Функция ошибки S(w) — квадратична относительно параметров w, поэтому поверхность

S = const является эллипсоидом. Как видно из уравнения (79), коэффициент регуляризации,

отличный от нуля, задает радиус сферы в этом пространстве. Точка касания эллипсоида и

сферы является решением уравнения (79) при фиксированном τ . При этом касание эллип-

соида в нулевой точке исключено. То есть, обнуление параметров w не происходит. Метод

гребневой регресии улучшает устойчивость параметров регрессионной модели, но не приво-

дит к обращению в ноль ни одного из них.
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Рис. 25. Зависимость значений параметров при гребневой регрессии от коэффициента

регуляризации τ .

Метод Лассо. Метод нахождения оценки параметров линейной модели при ограничении

на сумму их абсолютных значений. В отличие от гребневой регрессии, в Лассо некоторые

параметры становятся равными нулю, а значит, выполняется отбор признаков. Рассматри-

вается сумма модулей параметров модели, T (w) = ‖w‖1.
Регрессионные параметры выбираются из условия минимизации функции ошибки S(w) =

‖Xw− y‖22 при ограничении

T (w) ≤ τ, (80)

где τ — параметр регуляризации. Для решения используется метод квадратичного програм-

мирования с ограничением в виде линейного неравенства. При больших τ решение, получае-

мое методом квадратичного программирования, совпадает с решением, полученным методом

наименьших квадратов. Чем меньше τ , тем большее число параметров wj , j ∈ J принима-

ет нулевое значение, см. рис.26. Соответствующие признаки исключаются из регрессионной

модели.

Задача может решаться методом наименьших квадратов (38) с 2n ограничениями-неравенствами,

соответствующими 2n возможным наборам знаков параметров. Элемент sign(wj) набора па-

раметров принадлежит множеству {−1,+1}. Найдем решение при фиксированном τ ≥ 0.

Введем δi, i ∈ {1, 2, . . . , 2n} — n-мерные векторы вида [±1,±1, . . . ,±1]T. Тогда условия (80)

эквивалентны системе линейных неравенств

δT

iw ≤ τ для i = 1, . . . , 2n.

Для заданного вектора w пусть

E = {i : δT

iw 6 τ}.
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Рис. 26. Оценки параметров, полученные с помощью метода Лассо, в зависимости от

нормы ‖w‖1.

Введем матрицу GE, строками которой являются δi, i ∈ E, и 1 — вектор-строка из единиц

длиной, равной числу столбцов в GE . Начальное приближение для алгоритма: E = {i0},
где δi0 = sign(ŵ), ŵ — оценка вектора параметров методом наименьших квадратов без

ограничений в виде системы линейных неравенств. Пока ‖ŵ‖1 > τ

1) найти ŵ, минимизирующий функцию ошибки S(w) при GEw ≤ 1τ ,

2) добавить такое i в набор E, что δi = sign(ŵ).

Эта процедура сходится за конечное число шагов, так как на каждом шаге добавляется по

одному вектору δi и число добавляемых векторов конечно. Вектор ŵ получаемый на послед-

нем шаге, является решением задачи.

Рассмотрим альтернативный метод решения. Каждый параметр wj задачи оптимизации

записывается в виде wj = w+
j − w−

j , где w+
j и w−

j неотрицательны,

w+
j =

{

wj, wj ≥ 0,

0, wj < 0,
w−
j =

{

0, wj > 0,

wj, wj ≤ 0.

Тогда ограничения в виде системы линейных неравенств принимают вид







w+
j ≥ 0,

w−
j ≥ 0,
∑

j∈J
(w+

j + w−
j ) ≤ τ.

Таким образом, оптимизационная задача с n переменными и 2n ограничениями преобразо-

вана в задачу с 2n переменными и (2n+ 1) ограничениями.
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Поверхность S(w) = const в пространстве параметров модели является эллипсоидом. Си-

стема линейных неравенств, записанная выше, задает многомерный октаэдр в этом простран-

стве, а параметр τ — его размер. Точка касания эллипсоида и октаэдра является решением

нормального уравнения при фиксированном τ .

3.1.2. Корреляционные методы

Ступенчатая регрессия. Алгоритм состоит в последовательном добавлении признаков,

наиболее коррелирущих с вектором регрессионных остатков. Начальный набор признаков

пуст, A = ∅; вектор остатков ε0 = y. Рассмотрим k-й шаг алгоритма. Сначала находится

признак с номером jk, корреляция которого с вектором остатков максимальна:

jk = argmax
j∈J\A

εT

kχj .

Затем оценивается параметр wjk для найденного признака jk:

wjk =
εTkχj

‖χj‖2
.

Признак с номером jk включается в набор A и исключается из дальнейшего рассмотрения.

Обновляется вектор регрессионных остатков

εk+1 = εk + τsign
(
εTkχjk

)
χjk

,

где τ — достаточно маленькое число. Выбор большого значения τ , например,

τ =
|εTkχjk

|
‖χjk

‖2 ,

приводит к алгоритму последовательного добавления признаков, имеющих наибольшую кор-

реляцию с вектором регрессионных остатков. В этом случае обновление вектора регрессион-

ных остатков задано как εk+1 = εk − wjkχjk
.

Добавление признаков с ортогонализацией. Метод последовательного добавления при-

знаков с ортогонализацией основан на ортогонализации признаков-столбцов χ матрицы X.

Ортогонализация делает возможным вычисление индивидуального вклада каждого призна-

ка в вектор значений зависимой переменной. Матрица X может быть ортогонализована с по-

мощью процедур Грамма-Шмидта или Хаусхолдера.

Запишем ортогональное разложение матрицы X = QR, где Q — матрица, столбцы кото-

рой являются ортогональным базисом, а R — верхняя треугольная матрица. Тогда

y = Xw = Qv,

где v = Rw. Пусть на k-м шаге получен вектор регрессионных остатков εk. Обозначим Ak —

набор индексов признаков, а Āk — остальные признаки, J = Ak ⊔ Āk. Начальное значение

вектора регрессионных остатков ε0 = y, см. рис. 27 a). Начальный набор признаков A0 пуст.

Рассмотрим k-й шаг алгоритма.
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Рис. 27. Шаги алгоритма последовательного добавления признаков с ортогонализацией.

1. Находим признак jk, который составляет наименьший угол с вектором остатков εk:

jk = max
j∈Āk−1

χT

j εk

‖χj‖‖εk‖
.

Признак jk добавляется в набор Ak и удаляется из Āk.

2. Находим εPr
k — проекцию вектора остатков εk на χjk

, см. рис. 27, б):

εPr
k =

χT

jk
εk

‖χjk
‖2χjk

.

3. Находим параметр, соответствующий добавленному признаку:

wjk =
‖εPr

k ‖
‖χjk

‖ . (81)

4. Обновляется вектор остатков, см. рис. 27, б):

εk+1 = εk − εPr
k .

5. Признаки χj, j ∈ Āk, не входящие в набор Ak, проецируются на подпространство, ор-

тогональное пространству признаков из Ak, как показано на рис. 27, в). Выполняется

ортогонализация векторов признаков:

XĀk
= XĀk−1

− χjk

χT

jk
XĀk−1

‖χjk
‖2 .
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Вектор параметров w находится из (81):

w = R−1v.

Алгоритм последовательно добавляет признаки и, за счет ортогонализации матрицы пла-

на X, позволяет отбирать наименее коррелированные признаки. Всего требуется n = |J |
шагов.

Метод наименьших углов. На каждом шаге алгоритма выбирается признак χj , име-

ющий наибольшую корреляцию с биссектрисой между вектором y и ранее добавленными

признаками с индексами из множества Ak−1. На k-м шаге только k элементов вектора w

отличны от нуля. Алгоритм последовательно вычисляет приближение

f = Xw

зависимой переменной. Для приближения используется вектор корреляций столбцов матри-

цы X с вектором остатков y − f :

c(f) = XT(y − f).

На k-м шаге новое значение приближения вектора зависимой переменной y вычисляется

как

fk = fk−1 + γkuk.

Здесь uk — вектор единичной длины, вычисляемый следующим образом. Подмножество A ⊆
{1, . . . , n} = J задает матрицу

XA = [sj1χj1 , . . . , sj|A|
χj|A|

], j ∈ A,

где множитель s ∈ {+1,−1} и |A| — количество элементов множества A. Обозначим кова-

риационную матрицу

ΣA = XT

AXA

и

δA =
1

√

1T

AΣ
−1
A 1A

,

где 1A — вектор, состоящий из |A| единиц.

Вычислим единичный вектор

uA = XAwA,

где

wA = δAΣ
−1
A 1A.

Вектор uA образует со столбцами матрицы XA одинаковые углы, меньшие π
2
, поскольку

справедливы равенства

XT

AuA = δA1A и ‖uA‖ = 1.

Действительно,

XT

AuA = XT

AXAwA = XT

AXAδAΣ
−1
A 1A = δAX

T

AXA
(
XT

AXA
)−1

1A = δA1A
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Рис. 28. Метод наименьших углов для cлучая n = 2.

и норма вектора

‖uA‖2 = uTAuA = wT
AX

T
AuA = δ2A1

T
A
(
Σ−1

A
)

T

1A = 1.

Выполнение алгоритма. Назначим первое приближение вектора значений зависимой пе-

ременной f = 0. Вычислим текущую оценку fA и вектор корреляций

c = XT(y− fA).

Найдем текущий набор индексов A, соответствующих признакам с наибольшими абсолют-

ными значениями корреляций

cmax = max
j∈J

|cj| и A = {j : |cj| = cmax}.

Пусть

sj = sign(cj) для j ∈ A.

Построим матрицу XA, вычислим δA. Вычислим вектор uA и вектор скалярных произведений

a = XTuA.

Пересчитаем значение вектора fA:

fA = fA + γ̂uA, (82)

где

γ̂ =
+

min
j∈J\A

{
cmax − cj
δA − aj

,
cmax + cj
δA + aj

}

. (83)

Минимум, обозначенный здесь как min+ здесь берется по положительным значениям аргу-

ментов для каждого j.

Добавим в множество A индекс ĵ, где ĵ доставляет минимум соответствующему значе-

нию γ̂ из выражения (83),

ĵ = arg(γ̂(j)).

Алгоритм повторяется n раз.
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Так как столбцы матрицы X предполагаются линейно независимыми, то матрица Σ не вы-

рождена. В случае если матрица Σ является плохо обусловленной, для получения псевдооб-

ратной матрицы можно использовать сингулярное разложение.

Разъясним смысл коэффициента

δA = (1T

AΣ
−1
A 1A)

− 1

2 .

Пусть SA — гиперплоскость

SA =

{

v =
∑

j∈A
sjχjρj :

∑

j∈A
ρj = 1

}

, (84)

где ρj может быть отрицательным. Вектор из геометрического множества точек SA, имеющий

наименьшую длину, равен

vA = δAuA = δAXAwA,

где

wA = δAΣ
−1
A 1A

и

‖vA‖ = δA.

Действительно, квадрат нормы любого вектора из SA равен

‖XAρ‖2 = ρTΣAρ.

Выпишем лагранжиан с ограничением на сумму элементов ρj вектора ρ:

ρTΣAρ− λ
(
1T

Aρ− 1
)
.

Минимизируя по ρ, получаем

ρ = λΣ−1
A 1A, ρ = δ2AΣ

−1
A 1A = δAwA

и

vA = XAρ ∈ SA.

Норма вектора vA
‖vA‖2 = ρTΣ−1

A ρ = δ4A1
T

A(Σ
−1)T

A1A = δ2A.

Величина γ̂ в (83) интерпретируется следующим образом. Запишем оценку вектора зави-

симой переменных f как функцию от γ̂

f(γ̂) = fA + γ̂uA

при условии γ̂ > 0. Корреляция вектора регрессионных остатков с добавляемым j-м призна-

ком равна

cj(γ̂) = χT

j

(
y − f(γ̂)

)
= cj − γ̂aj .

Для j ∈ A получаем

|cj(γ̂)| = cmax − γ̂δA.
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Это означает, что все рассматриваемые на данном шаге максимальные абсолютные корреля-

ции уменьшаются на одну и ту же величину. Из предыдущих двух соотношений видно, что

если j ∈ Ac, то корреляция cj(γ) принимает наибольшее значение при

γ̂ =
cmax − cj
δA − aj

.

Аналогично корреляция −cj(γ̂) принимает наибольшее значение при

γ̂ =
cmax + cj
δA + aj

.
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Рис. 29. Оценки параметров для метода наименьших углов в зависимости от их

нормы ‖w‖1.

Таким образом, γ̂ в выражении (83) — минимальная положительная величина, при кото-

рой новый индекс j может быть добавлен в набор A.

С помощью модификаций алгоритма наименьших углов можно получить решения Лассо и

ступенчатой регрессии. Основным достоинством алгоритма является то, что он выполняется

за число шагов, равное числу свободных переменных.

Для иллюстрации основного недостатка алгоритма рассмотрим следующий пример. Пусть

матрица X состоит из столбцов значений трех признаков. Первый признак χ1 значительно

коррелирует с вектором зависимых переменных y, который является линейной комбинацией

остальных двух признаков x2 и x3. Например,

X = [χ1,χ2,χ3] =






1 1 0

1 0 1

1 0 0




 , y =






1

1

0




 .
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Алгоритм на первом шаге выберет первый признак, так как он сильнее коррелирует с век-

тором зависимых переменных, и затем присоединит остальные признаки. Ошибка модели,

полученной с помощью этого алгоритма, будет отлична от нуля в то время, когда существу-

ет модель, доставляющая нулевую ошибку, и векторы-признаки, входящие в модель, орто-

гональны. Для разрешения этого недостатка ниже предложен алгоритм, позволяющий уда-

лять мультиколлинеарные признаки и добавлять признаки, уменьшающие значение функции

ошибки.

3.1.3. Прореживающие методы

Прореживающие методы являются обобщением методов последовательного удаления при-

знаков. Они последовательно исключают параметры моделей согласно принятым критериям.

Благодаря этому, такие методы можно использовать как для удаления признаков обобщенно-

линейных моделей, так и для удаления элементов нелинейных моделей. При этом каждому

элементу нелинейной модели должен быть поставлен в соответствие параметр.

Оптимальное прореживание. Оптимальное прореживание — метод упрощения структу-

ры регрессионной модели. Основная идея прореживания заключается в том, что те элементы

модели, которые оказывают малое влияние на функцию ошибки S(w), можно исключить из

модели без значительного ухудшения качества аппроксимации.

Рис. 30. Функция выпуклости параметров модели.

Рассмотрим регрессионную модель общего вида f(w,X) и функцию ошибки S(w) = ‖y−
f(w,X)‖2. Найдем локальную аппроксимацию функции S(w) в окрестности произвольной
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точки w с помощью разложения в ряд Тейлора:

S(w +∆w) = S(w) + gT(w)∆w +
1

2
∆wTH∆w +O(‖∆w‖3),

где ∆w — приращение вектора параметров w, g — градиент,

g =
∂S(w)

∂w
,

и H = H(w) — матрица вторых производных, или матрица Гессе,

H =
∂2S(w)

∂w2
.

Предполагается, что функция S(w) достигает своего минимума при значении параметров w =

ŵ. Таким образом, предыдущее выражение можно упростить и представить в виде

∆S(ŵ) = S(ŵ +∆w)− S(ŵ) ≈ 1

2
∆wTH(ŵ)∆w.

Пусть исключение элемента функции регрессии f(ŵ,X) есть исключение одного пара-

метра, например, wj . Индекс j ∈ J в данном случае считаем номером элемента вектора

параметров w = [w1, . . . , wj, . . . , w|J |]
T. Число элементов вектора w может быть не равно

числу элементов вектора x — строки матрицы плана X.

Рис. 31. Зависимость функции ошибки от числа параметров модели.

На рис. 32 показан метод Optimal Brain Damage для удаления параметров в двухслойной

нейронной сети.

Пусть исключение элемента эквивалентно выражению ∆wj + wj = 0, иначе

eT

j∆w + wj = 0,
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Рис. 32. Метод OBD для двухслойной нейронной сети.

где ej — вектор, j-й элемент которого равен единице, все остальные элементы равны нулю.

Это самое сильное ограничение, не позволяющее применять данный метод для регрессион-

ных моделей произвольного вида.

Для нахождения элемента, который нужно исключить, требуется минимизировать квад-

ратичную форму ∆wTH∆w относительно ∆w при ограничениях eT

j∆w + wj = 0, для всех

значений j ∈ J . Индекс ĵ, который доставляет минимум квадратичной форме, задает номер

исключаемого элемента:

ĵ = argmin
j∈J , ∆w∈W

(∆wTH∆w) при eT

j∆w + wj = 0.

Задача условной минимизации решается с помощью введения множителя Лагранжа λ:

S(∆w) = ∆wTH∆w− λ(eT

j∆w + wj). (85)

Дифференцируя лагранжиан (85) по приращению параметров ∆w и приравнивая его гра-

диент к нулю, получаем для каждого индекса j параметра wj

∆w = − wj
[H−1]jj

H−1ej.

Этому значению вектора приращений параметров соответствует минимальное значение лагран-

жиана

Lj =
w2
j

2[H−1]jj
.

Полученное выражение называется мерой выпуклости функции ошибки S(∆w) при измене-

нии параметра wj.

Функция Lj зависит от квадрата параметра wj. Это говорит о том, что параметр с малым

значением wj должен быть удален из модели. Однако если j-й диагональный элемент [H−1]jj

матрицы, обратной матрицы Гессе, достаточно мал, это означает, что данный параметр ока-

зывает существенное влияние на функцию ошибки.

Для упрощения структуры регрессионной модели выполняются следующие шаги.
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1. Оцениваем параметры модели ŵ = arg min
w∈W

S(w|f,D).

2. Для вектора ŵ+∆w решаем оптимизационную задачу, находим для каждого индекса j

минимальное значение Лагранжиана Lj.

3. Выбираем среди Lj минимальное, исключаем элемент модели, соответствующий j-му

параметру.

4. Добавляем к вектору параметров ŵ, вектор приращений ∆wj , соответствующий ис-

ключаемому параметру c индексом j, либо переходим к первому шагу.

Шаги 1–4 процедуры повторяются до тех пор, пока значение функции ошибки S(w) не пре-

взойдет заданное или до достижения минимума одного из критериев сложности модели.

3.1.4. Шаговые методы

Шаговыми методами называются методы, заключающиеся в последовательном удалении

или добавлении признаков линейных или обобщенно-линейных моделей, согласно определен-

ному критерию.

Шаговая регрессия и критерии формирования набора признаков. На шаге с номе-

ром k сравнивается текущая модель задаваемая набором признаков Ak и все модели, постро-

енные на этом наборе путем удаления или добавления одного признака. При выборе модели

следующего, k + 1-го шага, используется критерий Фишера или F -критерий, который срав-

нивает значения функций среднеквадратичных ошибок двух моделей:

F =
S1 − S2

S2

m− n2

n1 − n2
.

Индекс 2 соответствует текущей линейной модели, а индекс 1 соответствует новой линейной

модели, которая является модификацией первой модели; n1, n2 — соответствующие числа

параметров моделей, m — объем регрессионной выборки. Если значение критерия больше

заданного, то вторая модель считается лучше первой. Отметим, что согласно изложенному

подходу, знаменатель правого сомножителя n1−n2 равен +1 или −1 в зависимости от шага.

Обозначим SA значение функции ошибки, которое модель, заданная набором индексов

признаков A, имеет после оценки своих параметров. Пусть на k-м шаге набор признаков

задан множеством A. На первом шаге начальным набором является пустой набор A = ∅.
На k-м шаге к текущему набору A присоединяется признак ĵ ∈ J \ A, который доставляет

максимум F -критерию:

ĵ = arg max
j∈J\A

F = arg max
j∈J\A

(
SA∪{j} − SA

SA
(m− |A|)

)

. (86)

При последовательном удалении признаков начальный набор состоит из всех признаков A =

J . На каждом шаге происходит удаление признака j ∈ A так, чтобы значение F -критерия

было минимально:

ĵ = argmin
j∈A

F = argmin
j∈A

(
SA\{j} − SA

SA
(|A| −m)

)

. (87)



106

В ходе процедуры происходит смена шагов (86) и (87). Задаются некоторые фиксирован-

ные пороговые значения FAdd и FDel. Индексы признаков добавляются в набор A до тех пор,

пока значение F -критерия на некотором шаге не станет меньше FAdd. Затем из набора A
удаляются индексы до тех пор, пока значение F -критерия для которых не превзойдет FDel.

Останов процедуры производится при достижении минимума, заданного критерием Малло-

уза Cp:

Cp =
SA
SJ

+ 2n−m,

где SJ — среднеквадратичная ошибка, вычисленная для модели, настроенной с помощью

метода наименьших квадратов на всем множестве признаков J , n = |J | — число признаков.

Критерий штрафует модели с большим числом признаков. Минимизация критерия позволяет

найти множество значимых признаков, иначе — оптимальную модель.

Основное преимущество шаговой регрессии — она применима в случае, когда число при-

знаков, из которых надо выбрать оптимальный набор, велико.

3.2. Сходимость при последовательном добавлении признаков

Рассматривается задача последовательного добавления признаков в регрессионную мо-

дель. Решается вопрос остановки процедуры добавления. Используемые при этом внеш-

ние критерии или критерии сложности модели позволяют определить сложность модели,

выражаемую, например, числом включаемых в модель признаков. Однако, с их помощью

невозможно определить, насколько отличается текущая порождаемая модель от оптималь-

ной [270]. Для этого вводится понятие расстояния между последовательно порождаемыми

моделями.

Ранее в работе рассматривались функции структурных расстояний между порождаемы-

ми моделями. В настоящем разделе рассмотрим расстояния, основанные на сравнении век-

торов регрессионных остатков моделей. В задачах выбора последовательно порождаемых

моделей требуется определить расстояние до неизвестной модели оптимальной сложности.

В случае, когда число элементов регрессионной выборки стремится к бесконечности, исполь-

зуется сходимость по вероятности матрицы ковариации.

3.2.1. Расстояние между последовательно порождаемыми моделями

Рассмотрим линейные модели вида

f1 : y = X1w1 + ε1, (88)

f2 : y = X1w1 +X2w2 + ε2. (89)

Матрица плана X1,X2 имеют соответственно размер m×n1 и m×n2 элементов. Предполага-

ется, что многомерная случайная величина ε ∼ N (0, σ2I) распределена нормально с нулевым

матожиданием.

Также предполагается существование некоторой «истинной» модели

f3 : y = X1
m×n1

w1 + X2
m×n2

w2 + X3
m×n3

w3 + ε, (90)
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в которой матрица X3 имеет m × n3 элементов. Заметим, что для моделей f1, f2 случайные

величины ε1 и ε2 определены через случайную величину ε истинной модели:

ε1 = X2w2 +X3w3 + ε и ε2 = X3w3 + ε.

Сравним дисперсии регрессионных остатков истинной модели f3 и моделей-претендентов f1, f2.

Идемпотентная симметричная матрица проекции случайной величины y на пространство

столбцов матрицы X равна X(XTX)−1XT. Обозначим R = I − X(XTX)−1XT матрицу, про-

ецирующую произвольный вектор y на дополнение к пространству столбцов X. Здесь мат-

рица X = X1
...X2 получена путем соединения матриц X1 и X2 по столбцам.

За оценку дисперсии регрессионных остатков ε2 модели f2 примем величину

σ̂2(ε2) =
1

m
yTRy, (91)

поскольку

ε̂2 = Ry.

В силу истинности модели f3, подставим (90) в (91) и получим:

mσ2(ε2) = wT

3X
T

3RX3w3 + 2wT

3X
T

3Rε+ εTRε, (92)

что доказывается путем использования свойств проекционной матрицы R:

R2 = R, RT = R и RX = 0.

Рассмотрим оценку дисперсии регрессионных остатков σ̂2(ε3) третьей, истинной моде-

ли (90). В [262] показано, что при достаточном числе m элементов выборки неравенство

σ̂2(ε3) < σ̂2(ε2)

справедливо с вероятностью, близкой к единице; евклидова норма ‖2wT

3X
T

3Rε‖ второго сла-

гаемого (92) стремится к нулю при увеличении объема выборки m.

3.2.2. Расстояние между функциями регрессии

Оценим наиболее правдоподобные параметры w моделей f и обозначим вектор регресси-

онных остатков функции регрессии, которая соответствует модели f2 как

ε̂2 = y−X1ŵ1 −X2ŵ2 = y −Xŵ.

Введем функцию расстояния ρ(fk, fl) = ‖ · ‖2 — евклидову норму разности векторов регрес-

сионных остатков двух моделей и обозначим расстояния между моделями D1 = ρ(f1, f3),

D2 = ρ(f2, f3) и D = ρ(f1, f2). При этом считаем, что объем выборки m фиксирован, конечен,

и поэтому в дальнейшем не учитывается. Таким образом,

D1 = ‖ε̂1 − ε‖2 = ‖y −Xŵ − (y −Xw−X3w3)‖2. (93)

Считая модель (90) истинной, запишем

Xŵ = X(XTX)−1XTy = Xw +PX3w3 +Pε, (94)
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где

P = X(XTX)−1XT

и, как было сказано ранее, P = I−R — идемпотентная симметричная проекционная матри-

ца, получаемая при проектировании вектора y на пространство столбцов матрицы X. Эта

матрица имеет свойство

RP = (I−P)P = 0.

Подставляя (94) в (93), получаем

D1 = ‖RX3w3 −Pε̂‖2 = (RX3w3 −Pε)T(RX3w3 −Pε) = wT

3X
T

3RX3w3 + εTPε.

Первая производная D1 относительно вектора X3w3 равна

∂D1

∂X3w3
= 2RX3w3. (95)

Идемпотентная и симметричная матрица является неотрицательно определенной. Так как

предполагается, что никакой вектор-столбец матрицы X3 не может быть представлен в виде

линейной комбинации некоторого набора столбцов матрицы X1
...X2, экстремум функции рас-

стояния D1 может быть получен при X3w3 = 0. Вторая производная функции расстояния D1

по X3w3 —
∂2D1

∂X3w3∂(X3w3)T
= 2R

также является неотрицательно определенной, и следовательно, экстремум, полученный вы-

ражением (95), является минимумом.

Расстояние между моделями f2 и f3 определено аналогично (93) как

D2 = ‖ε̂2 − ε‖2, (96)

где ε̂2 = y−X1ŵ1. Правая часть предыдущего равенства может быть переписана в виде

D2 = ‖ −X1ŵ1 +X1w1 +X2w2 +X3w3‖2.

При

X1ŵ = X1(X
T

1X1)
−1XT

1y = X1w1 +P1X2w2 +P1X2w3 +P1ε,

где

P1 = X1(X
T

1X1)
−1XT

1 = I−R1

подставлено в предыдущее выражение, получаем (96) в виде

D2 = ‖R1(X1w2 +X3w3)−P1ε‖2.

Используем свойство R1P1 = R1(I − R1) = R1 − R2
1 = 0 (матрицы, обратной к R1 не

существует) получаем

D2 = (X2w2 +X3w3)
TR1(X2w2 +X3w3) + εTP1ε.

Первая производная функции расстояния D2 по вектору X3w3 равна

∂D2

∂X3w3
= R1(X2w2 +X3w3) + (X2w2 +X3w3)

TR1 = 2R1(X2w2 +X3w3).
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Рис. 33. Сходимость при последовательном добавлении признаков.

При нахождении экстремума функцииD2 предполагаем, что матрицы X2 и X3 невырождены.

Так же как и ранее, предполагается, что каждый из столбцов этих матриц не является

линейной комбинацией столбцов прочих матриц или присоединений этих матриц. В таком

случае экстремум функции D2 достигается при

X3w3 = −X2w2.

Этот экстремум является минимумом, так как вторая производная функции D2 равна

∂2D2

∂X3w3∂(X3w3)T
= 2R1

и неотрицательно определена, то есть для произвольного вектора y ∈ Rm выполняется нера-

венство

xTR1x > 0. (97)

Расстояние между двумя функциями регрессии, которые соответствуют моделям f1 и f2

определено аналогично (93) и (96) как

D = ‖ε̂2 − ε̂1‖2 = ε̂T

2 ε̂2 − 2ε̂T

2 ε̂1 + ε̂T

1 ε̂1.

3.2.3. Критерии сходимости при выборе моделей

При неизвестной истинной модели f3, для выбора между моделями f1 и f2 может быть

использован следующий критерий. Рассмотрим гипотезу выбора модели f1 при условии нера-

венства

ε̂T

2 ε̂2 > qε̂T

1 ε̂1 при q > 1, (98)

в котором q = q(m, k1, k2) — функция от объема выборки m и числа признаков, которые

включают первая и вторая модели. Увеличение значения q снижает вероятность того, что
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Рис. 34. Зависимость дисперсии регрессионных остатков от числа объектов.

модель f1 будет принята. Прибавим одновременно к левой и правой части одни и те же

члены, взятые из (3.2.2.):

ε̂T

2 ε̂2 − 2ε̂T

2 ε̂1 + ε̂T

1 ε̂1 > qε̂T

1 ε̂1 − 2ε̂T

2 ε̂1 + ε̂T

1 ε̂1.

Так как проекционные матрицы P1P = P1 и R1R = R, то ε̂T

1 ε̂1 = ε̂T

2 ε̂1. При этом расстояние

между функциями f1 и f2, см. (3.2.2.), может быть записано как

D = ε̂T

2 ε̂2 − ε̂T

1 ε̂1.

Из этого следует, что критерий выбора модели может быть задан следующим образом: ги-

потеза f1 принимается, если расстояние D превосходит некоторый критический порог Q,

например

D > Q, гдеQ = (q − 1)ε̂T

1 ε̂1.

Учитывая предположение об истинности модели (90), выразим функции D и Q, используя

векторы X3w3 и ε:

D = ε̂T

2 ε̂2 − ε̂T

1 ε̂1 = yTR1y− yTRy = (X2w2 +X3w3 + ε)(R1 −R)(X2w2 +X3w3 + ε)

и

Q = (q − 1)
(
(X3w3 + ε)TR(X3w3 + ε)

)
.

Функции D и Q являются неотрицательными симметричными квадратичными функциями

от вектора X3w3, так как R−R1 = RP1, и матрица R неотрицательно определена. Первые

производные функций D и Q по X3w3 имеют вид

∂D

∂X3w3
= 2R1P(X2w3 +X3w3 + ε)

и
∂Q

∂X3w3

= 2(q − 1)R(X3w3 + ε).
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Снова предполагая, что матрицы X2 и X3 невырожденны, минимальное значение, ноль, для

функции расстояния D и критерия Q будет достигнуто при

X3w3 = −X2w2 − ε и X3w3 = −ε,

соответственно. Из вышеизложенного следует, что выбор модели может определяться значе-

нием вектора X3w3. Однако на выбор также влияют вектор X3w2, проекционная матрица R1

и вектор регрессионных остатков ε.

Определение множителя q. Рассмотрим тест Фишера вида

F =
k−1
2 (ε̂T

2 ε̂2 − ε̂T

1 ε̂1)

(m− k1 − k2)−1(ε̂T

1 ε̂1)
.

Нуль-гипотеза — принятие моделиf1 может быть отвергнута при F > c, где c — некоторый

заданный процентиль (как правило, 95-й) F -распределения со степенями свободы k2 и m −
k1 − k2. Перепишем последнее выражение как

(m− k1 − k2)ε̂
T

2 ε̂2 > (m− k1 − ck2)(ε̂
T

1 ε̂1)

при этом множитель q определяется выражением

m− k1 − k2 + ck2
m− k1 − k2

= 1 +
ck2

m− k1 − k1
, (99)

значение которого больше единицы при k2 6= 0. Заметим, что если F -тест может быть пред-

ставлен в виде (98), то другие нижеперечисленные критерии могут быть представлены по-

средством F -тестов c критическими значениями, отличными от c.

Рассмотрим другой критерий выбора моделей — скорректированный коэффициент детер-

минации

R2
adj = 1− m− 1

m− k

ε̂Tε̂

yTy
.

Используя этот критерий при выборе первой из двух моделей (88) и (89) получим

1− m− 1

m− k1 − k2

ε̂T

1 ε̂1

yTy
> 1− m− 1

m− k1

ε̂T

2 ε̂2

yTy
,

откуда следует
m− 1

m− k1
ε̂T

2 ε̂2 >
m− 1

m− k1 − k2
ε̂T

1 ε̂1.

Множитель q для этого критерия определен как

m− k

m− k1 − k2
= 1 +

k2
m− k1 − k2

. (100)

Так как введенное ранее пороговое значение > 1, то значение q, полученное из формулы (99)

больше значения q из формулы (100).

Критерий предсказательной способности, введенный в [121] предполагает принятие гипо-

тезы f1 при
m+ k1
m− k1

ε̂T

2 ε̂2 >
m+ k1 = k2
m− k1 − k2

ε̂T

1 ε̂1.
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При этом множитель q задан отношением

(m+ k1 + k2)(m− k1)

(m− k1 − k2)(m+ k1)
= 1 +

2mk2
(m− k1 − k2)(m+ k1)

.

Согласно информационному критерию Акаике [116] гипотезе f1 отдается предпочтение

при

exp

(
2k1
m

)

ε̂T

2 ε̂2 > exp

(
2(k1 + k2)

m

)

ε̂T

1 ε̂1.

При этом множителя q задан как

exp

(
2k2
m

)

.

Заметим, что в данном случае значение множителя не зависит от числа признаков первой

модели k1. При k2 6= 0 значение определенного в последнем выражении множителя q > 1.

В работе [351] введен следующий критерий предпочтения гипотезы f1
(

1 +
2k1
m

)

ε̂T

2 ε̂2 > exp

(

1 +
2(k1 + k2)

m

)

ε̂T

1 ε̂1,

множитель q для этого критерия определен выражением

m+ 2(k1 + k2)

m+ 2k1
1 +

2k1
m+ 2k1

.

Для оценки необходимого числа признаков, в работе [345] был предложен критерий, штра-

фующий модель за чрезмерное количество параметров. При этом модель f2 отвергается как

гипотеза только тогда, когда

m
k1
m ε̂T

2 ε̂2 > m
k1+k2

m ε̂T

1 ε̂1.

значение множителя при этом определено выражением

m
k2
m ,

который, как и критерий Акаике, не зависит от значения k1. Если разложить предыдущее

выражение в ряд Тейлора,

1 +
k2 logm

m
+

1

2

k22 logm

m2
+ . . . ,

то можно увидеть, что значение q > 1.

Критерий обобщенного скользящего контроля был предложен в работе [175]. Согласно

ему, модель f1 более предпочтительна, если

(
m− k1
m− k1

)2

ε̂T

2 ε̂2 >

(
m− k1

m− k1 − k2

)2

ε̂T

1 ε̂1.

В этом случае множитель q имеет вид

(
m− k1
m− k1

)2

ε̂T

2 ε̂2 = 1 +
2k2

m− k1 − k2
+

k22
m− k1 − k2

.

Согласно критерию Райса [338]. Модель f1 более предпочтительна, если

1

1− (2k1m−1)
ε̂T

2 ε̂2 >
1

1−
(
(2k1 + 2k2)m−1

) ε̂T

1 ε̂1,
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при это множитель q задан выражением

m

m− k1 − k2

m− 2k1
m

= 1 +
2k2

m− 2(k1 + k2)
.

Таким образом, известные критерии качества могут быть выражены с помощью введен-

ного расстояния между моделями с использованием множителя q.

3.3. Выбор признаков при последовательном порождении моделей

В данной работе предлагается компромиссный вариант алгоритма выбора регрессионных

моделей. Его целью является получение наиболее адекватной модели, включающей наименее

мультикоррелирующие признаки. Он заключается в последовательном порождении наибо-

лее правдоподобных моделей и основан на работах по символьной регрессии и байесовскому

подходу к оценке параметров моделей [390, 149, 150, 402]. При этом значения значения прав-

доподобия различных моделей сравниваются. В ходе порождения модели модифицируются

таким образом, что при добавлении признаков увеличивается правдоподобие модели, а при

удалении признаков уменьшается число мультикоррелирующих признаков. При удалении

признаков статистическая зависимость между параметрами модели не увеличивается.

Рис. 35. Проблема фильтрации шумовых и мультикоррелирующих признаков.

Рис. 35 иллюстрирует основные проблемы, возникающие при выборе признаков. Вектор y

зависимых переменных лежит в пространстве, натянутом на векторы-столбцы χ1, . . . ,χn

матрицы плана X. Пусть эти векторы расположены так, что вектор y образует наимень-

ший угол к вектору χ1, а вектор χ1 образует малый угол с вектором χ2. При этом век-

тор y лежит в одной плоскости с векторами χ3 и χ4, причем эти два вектора ортогональны.

Векторы χ5,χ6 «почти» ортогональны вектору y. Иначе говоря, векторы χ1,χ2 cчитаются

мультикоррелирующими, а векторы χ5,χ6 считаются шумовыми.

Предположим, что модель линейна и имеет не более двух параметров. Тогда алгоритм

последовательного добавления признаков, а также ряд других алгоритмов выберут векто-

ры χ1,χ2, получив таким образом не самое точное приближение и, в терминах возможно-

го значительного изменения параметров при незначительном изменении данных, не самую

устойчивую модель. Очевидно, что оптимальным решением для этой иллюстрации является

выбор признаков χ3,χ4, так как они дают точное приближение и устойчивую модель. Ни

один из вышеперечисленных алгоритмов не дает такого решения. Во-первых, потому, что он

не содержит критерии, позволяющие выявить наличие мультикоррелирующих признаков, и,

как следствие, устойчивость модели к небольшим изменениям выборки.
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Предположим, что к некоторой модели линейной регрессии

E(y|X1) = X1w1, D(y) = σ2Im, D(w1) = σ2(XTX)−1,

добавляются новые признаки {χn1+1, . . . ,χn1+n2
}. При этом модель принимает вид

E(y|X) = X1
m×n1

w1 + X2
m×n2

w2 = [X1,X1]

[

w1

w2

]

= X3
m×(n1+n2)

w3.

Пусть матрица X3, полученная в результате соединения матриц X1,X2, имеет ранг n1 + n2,

равный числу ее столбцов. Оценку ŵ3 вектора параметров w3 можно получить двумя пу-

тями: непосредственно вычислить ее методом наименьших квадратов или воспользоваться

теоремой о дополнительных регрессорах [94].

Пусть

P
m×m

= In −X1(X
T

1X1)
−1XT

1 ,

R
m×m

= Im −X3(X
T

3X3)
−1XT

3 ,

L
n1×n2

= (XT

1X1)
−1XT

1X2,

M
n2×n2

= (XT

2RX2)
−1

и

ŵ3
(n1+n2)×1

=

[

ŵ1

ŵ2

]

;

тогда:

1) ŵ1 = (XT

1X1)
−1XT

1(y −X2ŵ2) = ŵ1 − Lŵ2,

2) ŵ2 = (XT

2PX2)
−1X2Py,

3) yTRy = (y −X2ŵ2)
TP(y −X2ŵ2),

4) yTRy = yTPy − ŵT

2X
T

2Py,

5) D(ŵ3) =

(

(XT

1X1)
T + LMLT, −LM

−MLT, M

)

.

Таким образом получена оценка ŵ3 без обращения соединенной матрицы. Получение оценки

путем пересчета части системы линейных уравнений снижает время работы алгоритма вы-

бора признаков, особенно в случае, когда число n1 выбранных столбцов велико, а число n2

столбцов, которые рассматриваются в качестве претендентов на добавление, мало.

3.3.1. Процедура последовательного выбора признаков

В процедуре шаговой регрессии не учитывается то, что добавление или удаление призна-

ка может существенно изменить значения параметров w остальных признаков [χ1, . . . ,χr],

заданных набором A. Ранее вошедший в набор признак может перестать быть значимым

после добавления других признаков. Поэтому предполагая, что дисперсии признаков меня-

ются с изменением набора A незначительно, предложим модификацию шаговой процедуры,
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использующую альтернативные критерии добавления или выбора признаков и выбора опти-

мальной модели. Эта модификация позволяет решить ряд проблем получения устойчивой и

точной модели, описанных в [186, 301, 299, 286, 319].

Предлагаемый алгоритм использует счетное число порождаемых признаков при отыска-

нии линейной регрессионной модели. Введем процедуру пошагового нахождения модели. На

каждом шаге выполняются операции добавления признаков и прореживания признаков. Под

сложностью понимается число элементов линейной комбинации.

Используем два набора признаков: порожденный набор Z и текущий набор C. В начале

работы алгоритма C = ∅.
Рассмотрим k-й шаг алгоритма.

1. Последовательно, методом Add, добавляются признаки из объединенного набора C∪Z в

активный набор признаков Ak. Итерации повторяются до тех пор, пока при увеличении

сложности модели правдоподобие модели не будет меньше заданного порогового Emin.

2. Выполняется прореживание модели: последовательно удаляются те элементы линей-

ной комбинации, заданной набором Ak, для которых критерий мультиколлинеарности

Белсли [135] принимает максимальное значение. Прореживание модели продолжается

до тех пор пока, при уменьшении сложности модели, правдоподобие не будет меньше

порогового Emin. Коэффициенты полученной модели пересчитываются.

Итерации повторяются согласно критерию правдоподобия моделей. В результате получаем

активный набор признаков Ak, который на следующей итерации используется в качестве

текущего набора C.

Пороговое правдоподобие вычисляется следующим образом. Обозначим p(β)
def
=

p(β|f) — априорное распределение параметров модели. Рассмотрим функцию правдоподо-

бия p(D|β, f) def
= p(y|{xj}nj=1,β, f) — условную плотность распределения случайной величины

при заданном векторе параметров.

При отыскании вектора параметров вместо максимизации функции правдоподобия

p(D|β, f) будем максимизировать апостериорное распределение параметров

p(β|D, f) = p(D|β, f)p(β|f)
p(D|f) . (101)

Знаменатель p(D|f) есть интеграл числителя формулы Байеса по всему пространству

параметров:

p(D|f) =
∫

p(D|β, f)p(β|f)dβ. (102)

Пусть зависимая переменная распределена нормально. Тогда функция правдоподобия

принимает вид

p(D|β, f) =
m∏

i=1

N (yi|f(xi,β), σ−2
ν ), (103)

где σ2
ν — дисперсия случайной величины ν.

Пусть многомерная случайная величина — вектор параметров модели также имеет нор-

мальное распределение с нулевым матожиданием и ковариационной матрицей

αI =
1

σ2
β

I.



116

Тогда распределение вектора параметров модели

p(β|α, f) =
( α

2π

)n

exp
(

−α
2
βTβ

)

. (104)

Полученный знаменатель формулы (101) называется правдоподобием модели и служит для

сравнения моделей.

Сравнение моделей выполняется с помощью связанного Байесовского вывода. Обозна-

чим распределение моделей при фиксированных данных p(fi|D) и рассмотрим числитель

формулы Байеса

p(fi|D) =
p(D|fi)p(fi)

p(D)
, (105)

в котором правдоподобие моделей p(D|fi) определяется выражением (102). Будем считать

априорную вероятность равной для всех моделей, p(fi) = p(fj). Так как знаменатель вы-

ражения (105) не зависит от выбора модели, то сравнение моделей происходит через вы-

числение правдоподобие моделей с помощью формул (103) и (104). Порог Emin вычисляется

как mini=1,...,M p(D|fi) для набора из M моделей, имеющих максимальное правдоподобие;

параметр M задан.

Результатом работы алгоритма является модель удовлетворительной точности; мульти-

коррелирующие признаки исключены.

3.3.2. Выбор признаков в условиях мультикорреляции

Исследуется проблема оптимальной сложности модели в связи с ее точностью и устойчи-

востью. Задача состоит в нахождении наиболее информативного набора признаков в усло-

виях их высокой мультиколлинеарности. Для выбора оптимальной модели используется мо-

дифицированный алгоритм шаговой регрессии, являющийся одним из алгоритмов добав-

ления [168, 167] и удаления [134] признаков. Для описания работы пошагового алгоритма

предложена модель n-мерного куба. Проанализированы величины матожидания и диспер-

сии функции ошибки.

Решается задача восстановления линейной регрессии при наличии большого числа муль-

тиколлинеарных признаков [382]. Термин «мультиколлинеарность» введен Р. Фишером при

рассмотрении линейных зависимостей между признаками [200]. Проблема состоит в том, что

количество признаков значительно превосходит число зависимых переменных, то есть мы

имеем дело с переопределенной матрицей. Для решения этот задачи необходимо исключить

наиболее малоинформативные признаки. Для отбора признаков предлагается использовать

модифицированный метод шаговой регрессии.

Ранее для решения подобных задач использовались следующие методы: метод наимень-

ших углов LARS [184], Лассо [384], ступенчатая регрессия [182], последовательное добавление

признаков с ортогонализацией FOS [168, 167], шаговая регрессия [185, 337] и другие.

Задача выбора оптимальной модели. Опишем, в чем состоит задача выбора оптималь-

ной модели. Задана выборка D = ({xi, yi}) , i ∈ I, где множество свободных переменных —

вектор x = [x1, . . . , xj, . . . , xn], проиндексировано j ∈ J = {1, . . . , n}. Задано разбиение мно-

жества индексов элементов выборки I = L ⊔ C. Также задан класс линейных параметри-
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ческих регрессионных моделей f(w,x) = 〈w,x〉 — параметрических функций, линейных

относительно параметров. Функция ошибки задана следующим образом

S =
∑

i∈X
(yi − f(w,xi))

2, (106)

где X ⊆ I —некоторое множество индексов. Требуется найти такое подмножество индексов

A ⊆ J , которое бы доставляло минимум функции

A∗ = arg min
A⊆J

S(fA|w∗,DC) (107)

на множестве индексов C. При этом параметры w∗ модели должны доставлять минимум

функции

w∗ = arg min
w∈W

S(w|DL, fA) (108)

на множестве индексов L. Здесь fA обозначает модель f , включающую только столбцы мат-

рицы X с индексами из множества A, а обозначение вида S(w|D) означает, что переменная

D фиксирована, а переменная w изменяется.

Процедура выбора оптимального набора признаков. Процедура выбора оптималь-

ного набора признаков состоит из этапов добавления и удаления. На первом этапе последова-

тельно добавляются признаки, доставляющие максимум правдоподобия модели. На втором

этапе происходит последовательное удаление признаков с целью увеличения устойчивости

модели, в случае обобщенно-линейных моделей уменьшения мультиколлинеарности призна-

ков.

Пусть на k-ом шаге алгоритма имеется активный набор признаков Ak ∈ J . На нулевом

шаге A0 пуст.

Этап добавления. Находим признак доставляющий максимум p(D|A,B, fAk−1
) на обуча-

ющей выборке

j∗ = argmax
j∈J\Ak−1

p(D|A,B, fAk−1∪{j}).

Затем добавляем новый признак j∗ к текущему активному набору

Ak = Ak−1 ∪ {j∗}

и повторяем эту процедуру до тех пор, пока p(D|A,B, fAk
)менее своего максимальноне зна-

чение на данном этапе не более, чем на некоторое заданное значение ∆.

Этап удаления. Находим индексы обусловленности и долевые коэффициенты для текуще-

го набора признаков Ak−1. Находим количество достаточно больших индексов обусловленно-

сти. Достаточно большими считаются индексы, квадрат которых превосходит максимальный

индекс обусловленности ηt, где t = |Ak−1| количество признаков в текущем наборе Ak−1.

i∗ =
t∑

g=1

[
η2g > ηt

]
. (109)

Находим в матрице долевых коэффициентов var(w) столбец j∗ с максимальной суммой по

последним i∗ долевым коэффициентам

j∗ = arg max
j∈Ak−1

t∑

g=t−i∗+1

qjg. (110)
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Удаляем j∗-ый признак из текущего набора

Ak = Ak−1\j∗

и повторяем эту процедуру до тех пор, пока p(D|A,B, fAk
) менее своего максимального зна-

чения на данном этапе не более, чем на некоторое заданное значение ∆. Повторение этапов

добавления и удаления осуществляется до тех пор, пока значение p(D|A,B, fAk
) не стабили-

зируется.

Удаление признаков. Рассмотрим матрицу признаков X. Она имеет размерность m× n.

Выполним ее сингулярное разложение:

X = UΛVT,

где U, V — ортогональные матрицы размерностью соответственно m × m и n × n и Λ —

диагональная матрица с элементами (сингулярными числами) на диагонали такими, что

λ1 > λ2 > . . . > λr,

где r — ранг матрицы X. Заметим, что в нашем случае r = n. Это связано с тем, что в алго-

ритме шагового выбора на каждом шаге мы имеем мультиколлинеарный набор признаков.

Столбцы матрицы V являются собственными векторами, а квадраты сингулярных чисел —

собственными значениями матрицы XTX.

XTX = VΛTUTUΛVT = VΛ2VT,

XTXV = VΛ2.

Отношение максимального сингулярного числа к j-му сингулярному числу назовем индексом

обусловленности с номером j

ηj =
λmax

λj
.

Если матрица X не полного ранга, то значительная часть индексов обусловленности не опре-

делена. В нашем случае, как говорилось выше, матрица признаков X является матрицей

полного ранга.

Так как модель линейна, то w = By, где w — вектор параметров модели. То есть wi = bT

i y,

где

B =






bT

1

. . .

bT

n




 .

Мы ищем несмещенную оценку параметров

E(w) = w = BXw,

то есть BX = I, где I — единичная матрица.

Тогда ковариация параметров wi и wj равна

cov(wi, wj) = E(bT

i y − bT

iXw)(bT

jy − bT

jXw) = bT

i E((y−Xw)(y−Xw)T))bj =
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= E(ξiξ
T

j )b
T

i bj = σ2bT

i bj ,

где ξi — i-ый регрессионный остаток, а σ2 — дисперсия регрессионных остатков.

Мы хотим найти несмещенную оценку параметров, минимизирующую дисперсию пара-

метров по каждой компоненте
{

σ2bT

i bi −→ min
B

bT

iX = eT

i

,

где eT

i — i-ая строка единичной матрицы. Составим фунцию Лагранжа

L = bT

i bi +ΛT

i (X
Tbi − ei),

где Λ = (Λ1 . . .Λn). Продифференцировав по bi, получим

{

2bi +XΛi

XTbi − ei = 0

Из первого уравнения bi = −1
2
XΛi, тогда −1

2
XTXΛi = ei. То есть Λ = −2(XTX)−1, и,

окончательно, для B получим

B = (XTX)−1XT.

Для ковариационной матрицы A получим

A = σ2BBT = σ2(XTX)−1XTX((XTX)−1)T = σ2X−1(XT)−1XTX((XTX)−1)T =

= σ2((XTX)−1)T = σ2(XTX)−1.

Выражение σ2(XTX)−1 является несмещенной оценкой ковариационной матрицы признаков,

а в случае линейной модели оно в точности совпадает с ковариационной матрицей, то есть

A−1 = σ−2XTX.

Используя сингулярное разложение, дисперсия параметров, найденных методом наимень-

ших квадратов w = (XTX)−1XTy, может быть записана как

var(w) = σ2(XTX)−1 = σ2(VT)−1Λ−2V−1 = σ2VΛ−2VT .

Таким образом, дисперсия j-го регрессионного коэффициента — это j-й диагональный эле-

мент матрицы var(w).

Для обнаружения мультиколлинеарности признаков построим таблицу, в которой каждо-

му индексу обусловленности ηj соответствуют значения qij — долевые коэффициенты. Сумма

долевых коэффициентов по индексу j равна единице.

σ−2var(wi) =
n∑

j=1

υ2ij
λ2j

= (qi1 + qi2 + . . .+ qin)
n∑

j=1

υ2ij
λ2j
,

где qij — отношение соответствующего слагаемого в разложении вектора σ−2var(wi) ко всей

сумме, а V = (vij). Чем больше значение долевого коэффициента qij тем больший вклад

вносит j-ый признак в дисперсию i-го регрессионного коэффициента.

Из таблицы (9) определяется мультиколлинеарность: большие величины ηj означают, что,

возможно, есть зависимость между признаками. Если присутствует только один достаточно
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Таблица 9. Долевые коэффициенты.

Индекс var(w1) var(w2) . . . var(wn)

обусловленности

η1 q11 q21 . . . qn1

η2 q12 q22 . . . qn2
...

...
...

. . .
...

ηn q1n q2n . . . qnn

большой индекс обусловленности, тогда возможно определение участвующих в зависимости

признаков из долевых коэффициентов: признак считается вовлеченным в зависимость, если

его долевой коэффициент связанный с этим индексом превышает выбранный порог (обыч-

но 0.25). Если же присутствует несколько больших индексов обусловленности, то вовлечен-

ность признака в зависимость определяется по сумме его дисперсионных долей, отвечающих

большим значениям индекса обусловленности: если сумма превышает выбранный порог, то

признак участвует как минимум в одной линейной зависимости. Для нахождения мульти-

коллиниарных признаков решаются задачи (109) и (110).

Проиллюстрируем метод Белсли на примере. Используется неизменные признаки x1, x5

и зависящие от параметра k признаки x2, x3, x4. При k = 0 все признаки ортогональны, при

увеличении k признаки x2, x3 приближаются к x1, а x4 — к x5 вплоть до полной коллинеар-

ности при k = 1. На рис.36a-36d приведены матрицы долевых коэффициентов в зависимости

от k.

В таблице (10) приведены значения индексов обусловленности в зависимости от k.

Таблица 10. Индексы обусловленности.

j, k 0.15 0.25 0.4 0.9

1 1.0 1.0 1.0 1.0

2 1.0 1.0 1.1 1.2

3 1.1 1.2 1.5 21.5

4 1.2 1.4 2.0 22.1

5 1.2 1.5 2.1 24.0

Наблюдается две основных зависимости — первая между признаками x1, x2, x3 и вторая

между признаками x4, x5.

3.3.3. Оценка дисперсии функции ошибки

Функцию ошибки S можно при фиксированном наборе признаков A ∈ J считать случай-

ной величиной. Мы хотим минимизировать ее математическое ожидание и дисперсию при

фиксированной сложности модели.

Для данного набора признаков A ∈ J будем многократно разбивать выборку на обучение

L и контроль C. Полученные значения функции ошибки S можно считать реализациями
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(d) k = 0.9

Рис. 36. Значения индексов обусловленности в зависимости от порога k.
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случайной величины. Тогда математическое ожидание и дисперсия оцениваются следующим

образом

ES =
1

m

m∑

i=1

Si,

DS =
1

m

m∑

i=1

(Si −ES)2,

где m — число разбиений выборки, а Si — значение функции ошибки при i-ом разбиении.

Ниже представлены графики полученные по данным прогрессирования заболевания у

больных диабетом. На нем отмечены все 2n точек, где n = 10 — число признаков. По вер-

тикали отложена дисперсия в логарифмическом маштабе, а по горизонтали количество при-

знаков в наборе. При каждом значении числа признаков (сложности модели) найден набор

с минимальным математическим ожиданием функции ошибки — эти точки отмечены крас-

ным.
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Рис. 37. Зависимость логарифма дисперсии функции ошибки от числа признаков при

leave-one-out.

По графикам видно, что у наборов с малым математическим ожиданием функции ошибки

дисперсия тоже мала.

Путь в n-мерном кубе. В нашей задаче мы имеем дело с n признаками, то есть сущестует

2n возможных наборов признаков, из которых мы пытаемся найти оптимальный. Все эти 2n

наборов можно представить как вершины n-мерного куба. В данной работе используется

шаговый алгоритм поиска оптимального набора, то есть пошагового движения по вершинам

этого куба.

Приведем пример движения по вершинам куба при работе предложенного алгоритма.

Всего использовалось 6 признаков x1, . . . , x6, они изображены на рис. 35. Также на нем по-

казан вектор ответов y.

На рис. 39 показан путь по вершинам куба для описанных данных. По вертикали от-

ложен номер признака, по горизонтали — номер итерации. Красная клетка означает, что
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Рис. 38. Зависимость логарифма дисперсии функции ошибки от числа признаков при

случайном разбиении выборки.
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Рис. 39. Иллюстрация пути в кубе.
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признак на данной итерации вошел в набор, синяя — не вошел. Например признак номер 6

присутствовал в наборе с 3 по 8 итерацию, но в конечный набор не вошел.

Предложен метод поиска оптимальной модели, основанный на комбинации двух страте-

гий: отбор признаков и выбор модели. Особенно полезен предложенный метод в случае, когда

данные содержат большое число мультиколлинеарных признаков. Предложенный алгоритм

позволяет получать хорошо обусловленные наборы порожденных признаков.

В работе теоретически обоснованно, что математическое ожидание функции ошибки S

достигает минимума при заданной сложности модели на том же наборе, на котором диспер-

сия достигает минимума. Этот результат так же подтвержден экспериментально на реальных

данных.

3.4. Сравнение и анализ методов выбора признаков

Результаты сравнения алгоритмов приведены в табл. 11. Сравнение выполнялось на за-

даче поиска модели волатильности опционов. Использовались исторические данные торгов

опционом Brent Crude Oil [75]. В таблицу входят значения функционала качества на обучаю-

щей и контрольной выборке, информационный критерий Акаике, число переменных модели.

Исходя из значений критериев делается вывод об эффективности работы алгоритмов.

Таблица 11. Результаты работы алгоритмов выбора признаков.

Алгоритм SL SC AIC BIC Cp lg κ k

Генет. 0,073 0,107 -1152 -1072 337 13 26

МГУА 0,146 0,194 -1076 -1045 745 6 10

Шаг. рег. 0,128 0,154 -1092 -1055 644 7 12

Гребн. 0,111 0,146 -819 -330 832 33 160

Лассо 0,121 0,147 -1089 -1034 611 5 18

Ступ. 0,071 0,096 -1157 -1077 324 9 26

FOS 0,106 0,135 -1105 -1044 527 7 20

LARS 0,098 0,095 -1102 -1017 492 7 28

Предл. 0,097 0,123 -1118 -1054 469 5 21

Для каждого алгоритма вычислены значения ошибок SL и SC на обучении и контроле (36),

значение информационных критериев Акаике

AIC = m(ln
S

m
) + 2k,

Байеса

BIC = m(ln
S

m
) + k lnm,

Маллоуза, десятичный логарифм числа обусловленности κ матрицы значений отобранных

признаков и сложность модели k.

На рис. 79 показана одна из полученных моделей. По оси K отложена цена исполнения

опциона, по оси t отложено время до исполнения. Точками показаны исходные данные. Полу-

ченная модель является адекватной и удовлетворительно приближает исторические данные.



125

4. Выбор моделей

4.1. Cвязанный байесовский вывод при выборе моделей

Cвязанный байесовский вывод — метод сравнения регрессионных моделей, основанный на

анализе свойств функций распределения параметров. Этот метод использует классический

байесовский вывод дважды: для вычисления апостериорного распределения параметров мо-

дели и для вычисления апостериорной вероятности самой модели. Связанность заключается

в том, что оба вывода используют общий сомножитель, называемый правдоподобием модели.

Неотъемлемой частью этого метода является анализ пространства параметров модели и за-

висимости целевой функции от значений параметров. Результатом такого анализа является

возможность оценить, насколько важны отдельные параметры модели для аппроксимации

данных. Cвязанный байесовский вывод используется как в задачах регрессии, так и в задачах

классификации.

4.1.1. Порождающие и разделяющие модели

Пересмотрим задачу восстановления регрессии (1),

E(y|x) = f(w,x),

поставленную в первом разделе, следующим образом. Согласно гипотезе порождения дан-

ных (6),

y ∼ N (f, β−1),

и условиям (37), математическое ожидание случайной величины y, которое находится при

восстановлении регрессии, зависит от неслучайной величины x. В задачах регрессии счита-

ется, что величина y лежит на оси действительных чисел, y ∈ R. В задачах классифика-

ции считается, что величина y принадлежит конечному множеству меток классов, напри-

мер, y ∈ {0, 1}. Для предсказания значения случайной величины y при новом значении x

строится параметрическая модель f(w,x), параметры w которой оцениваются по обучаю-

щей выборке D = {yi, xi}, i ∈ I.

В случаях, когда процедура оценивания параметров модели вместе с восстановлением ма-

тематического ожидания E(y|x) также включает и восстановление условной плотности рас-

пределения p(y|x), регрессионная модель называется разделяющей (англ. discriminative [149,

386, 150]). Восстановленная непрерывная плотность распределения используется для пред-

сказания значений зависимой переменной y при новых значениях независимой перемен-

ной x. В качестве примеров разделяющих моделей приведем модели линейной и логисти-

ческой регрессии, функции радиального базиса, нейронные сети или машины опорных век-

торов [131, 148].

Альтернативный подход к решению задачи восстановления регрессии заключается в вос-

становлении плотности совместного распределения p(y,x), описанной, например, с помощью

параметрической модели. Данное распределение используется для оценки параметров плот-

ности условного распределения p(y|x) с целью предсказания значения зависимой перемен-

ной y для новых значений независимой переменной x. Этот подход называется порожда-



126

ющим, (англ. generative), так как с помощью восстановленного совместного распределе-

ния p(y,x) можно породить значения переменной y, вектора x или пары (x, y) в зависимости

от гипотезы порождения данных. В качестве примеров порождающих моделей приведем

гауссовские смеси моделей и скрытые марковские модели [194, 191].

На практике обобщающая способность порождающих моделей зачастую хуже чем у раз-

деляющих из-за разницы между распределением, задаваемым моделью и реальным неиз-

вестным распределением данных [150, 386]. Когда обучающая выборка велика, разделяю-

щие техники широко используются, так как они дают хорошую обучающую способность.

Однако сбор измеряемых данных, особенно подготовка значений зависимой переменной ре-

грессионной выборки, в ряде практических приложений может стоить весьма дорого [31].

Поэтому в случаях, когда получить регрессионную выборку достаточной величины дорого,

предлагается использовать порождающие методы [210, 354, 210].

Рассмотрим эвристическую процедуру, использующую комбинацию порождающих и раз-

деляющих моделей для сочетания преимуществ обоих подходов. Порождающая модель мо-

жет быть определена функцией плотности совместного распределения p(x, y|θ) вектора неза-

висимых переменных x и зависимой переменной y, зависящей от набора параметров θ. Такая

модель задается априорной вероятностью p(f |π) вместе с внутриклассовым распределением

вероятности для каждого класса p(x|y, ζ) таким образом, что:

p(x, y|θ) = p(y|π)p(x|y, ζ),

где θ = [π, ζ]T. Так как, согласно методу наибольшего правдоподобия, элементы выборки

рассматриваются как независимые случайные величины, функция плотности их совместного

распределения определяется как

Lgn(θ) = p(X,y, θ) = p(θ)
∏

i∈I
p(xi, yi|θ).

Для оценки вектора параметров θ необходимо максимизировать функцию Lgen,

θ̂ = argmax

(

p(θ)
∏

i∈I
p(xi, yi|θ)

)

.

Так как p(X,y, θ) = p(θ|X,y)p(X,y), данное условие эквивалентно максимизации функции

плотности апостериорного распределения p(θ|X,y).
В работе [154] утверждается, что при максимизации функции правдоподобия разделяю-

щей модели

Lds(θ) = p(y, θ|X) = p(θ)
∏

i∈I
p(yi|xi, θ),

где

p(y|x, θ) = p(x, y|θ)
∑

i∈I
p(xi, yi|θ)

,

обобщающая способность разделяющей модели выше, чем порождающей.
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4.1.2. Интегральная функция правдоподобия

Интегральная функция правдоподобия является функцией правдоподобия, в которой

переменные-параметры имеют условное распределение.

Рассмотрим параметр θ = [x,w]T. Для этой пары интегральная функция правдоподобия

имеет вид

L(x; y) = p(y|x) =
∫

w∈W
p(y|x,w)p(w|x)dw.

Как взятие интеграла этой функции может стать вычислительно сложной задачей. В та-

ком случае используются сэмплирующие методы, в первую очередь метод Монте-Карло или

гиббсовские методы сэмплирования. В частных случаях используется аппроксимация Ла-

пласа или EM-алгоритмы [154].

В байесовском сравнении моделей условные переменные являются параметрами моделей.

Условное правдоподобие является вероятностью появления данных для некоторой фиксиро-

ванной модели и не предполагает фиксацию параметров этой модели. Считая, как и ранее,

вектор w параметрами модели, записываем интегральное правдоподобие модели в виде

p(y, f) =

∫

Rn

p(D|w, f)p(w|f)dw.

Для двух моделей отношение этих интегралов называется байесовским множителем:

p(f1|D)

p(f2|D)
=
p(f1)

p(f2)

p(D|f1)
p(D|f2)

.

4.1.3. Частотный и байесовский подход

Рассмотрим различия традиционного, частотного подхода и байесовского подхода к оцен-

ке параметров и к выбору разделяющих моделей. Пусть для некоторой модели f(w,x) по

выборке D путем максимизации функции правдоподобия p(D|w) получена оценка парамет-

ров ŵ. Такие параметры называются наиболее правдоподобными. Традиционный подход

не использует понятия статистической сложности модели при оценке параметров. Поэтому,

с целью исключения переобучения выбираемых моделей используются процедуры скользя-

щего контроля.

Помимо функции правдоподобия в байесовском подходе рассматривается функция плот-

ности распределения вектора параметров p(w). При этом регрессионная выборка D не ис-

пользуется, и данное распределение считается априорным. Апостериорная плотность рас-

пределения параметров, согласно теореме Байеса, имеет вид

p(w|D) =
p(D|w)p(w)

p(D)
.

Параметры, полученные путем максимизации функции плотности апостериорного распреде-

ления p(w|D), называются наиболее вероятными. Знаменатель вышеприведенной формулы

имеет вид

p(D) =

∫

p(D|w′)p(w′)dw′

и рассматривается как нормировочный коэффициент, который необходим для того, чтобы

интеграл апостериорного распределения p(w|D) был равен единице.
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Рис. 40. Регрессионная выборка и её приближения полиномами.

Так как модель f , выбираемая из набора моделей F, зависит от значения вектора пара-

метров w, представим правдоподобие моделей в виде интеграла по пространству параметров

p(D|f) =
∫

w∈W

p(D|w, f)p(w|f)dw. (111)

Априорная плотность распределения параметров w модели f на выборке D равна

p(w|D, f) = p(D|w, f)p(w|f)
p(D|f) , (112)

где p(w|f) — априорно заданная плотность распределения параметров и p(D|w, f) — функ-

ция правдоподобия параметров. Выражения (111) и (112) называются формулами байесов-

ского вывода первого и второго уровня.

1 2 3 4 5 6 7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Degree, n

R
M

S

 

 

Train
Test

Рис. 41. Ошибка на тестовой и на обучающей выборке для полиномов различной степени.
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Проиллюстрируем вышеописанное различие примером оценки параметров полиномиаль-

ной регрессионной модели, записанной в следующем виде:

f(x,w) = w1 + w2ξ + w3ξ
2 + . . .+ wnξ

n−1 =
n∑

j=1

wjξ
j−1.

Рассмотрим традиционный подход. На рисунке 40 показана синтетическая регрессионная

выборка и искомая функция, по которой эта выборка была порождена. Также показаны

несколько полиномиальных моделей, параметры которых получены методом наименьших

квадратов. В случае, когда степень полинома слишком мала, n = 0, 1, результат является

слабым приближением к синусоподобной кривой. В то же время при слишком большой сте-

пени полинома, n = 9, результат снова оказывается неудачным, так как модель переобучена.

Наилучшая аппроксимация получена для модели «средней» структурной сложности, n = 3.

Рисунок 41 подтверждает вышеприведенное предположение; по оси абсцисс отложена сте-

пень полинома, по оси ординат — среднеквадратичная ошибка для обучающей и тестовой

подвыборок:

RMS =

√

2S(ŵ)

N
, S = ‖f(ŵ,X)− y‖2.

Наилучшая обобщающая способность, иначе — наименьшая ошибка на контрольной выборке,

доставлена моделями «средней» структурной сложности.

Рассмотрим байесовский подход к данной задаче. Пусть зависимая переменная имеет нор-

мальное распределение, а ее математические ожидание зависит от независимой неслучайной

величины x. Тогда функция правдоподобия имеет вид:

p(D|w) =

m∏

i=1

N
(
E
(
yi|f(w,xi)

)
, β−1

)
,

где значение функции f(w,xi) является математическим ожиданием, а переменная β обратна

дисперсии случайной величины yi. Пусть вектор параметров модели w является нормально

распределенной случайной величиной,

p(w|α) = N
(
E(w|0), α−1I

)
=
( α

2π

)n
2

exp
(

−α
2
wTw

)

,

где переменная α обратна дисперсии каждого элемента многомерной случайной величины w.

Используя теорему Байеса, можно вычислить апостериорное распределение параметра w,

которое также подчинено нормальному закону.

Для оценки обобщающей способности восстановим функцию плотности условного рас-

пределения зависимой переменной

p(y|x,D) =

∫

p(y|x,w)p(w|D)dw = N
(
y|E(wTw), σ2(wTw)

)
,

в котором математическое ожидание E(x) и дисперсия σ2(x) (при предположении о равенстве

дисперсий каждого элемента x вектора x) заданы выражениями

E(x) = βxTC
∑

i∈I
xiyi
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и

σ2(x) = β−1 + xTCx.

Элементы вектора x = [x1, . . . , xj, . . . , xn]
T соответствуют значениям мономов полинома (при-

нятой модели), xj = ξj−1. Согласно гипотезе порождения данных, матрица в этих выраже-

ниях, имеет вид:

C−1 = αI+ β
∑

i∈I
xix

T

i .
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Рис. 42. Распределение зависимой переменной для модели оптимальной сложности.

На рисунке 42 показан график плотности распределения зависимой переменной y при

изменяющейся независимой переменной ξ. Дисперсия этого условного распределения также

зависит от независимой переменной ξ. Линиями показаны функция, породившая выборку

и восстановленная функция регрессии f(ŵ, ξ) — математическое ожидание зависимой пере-

менной y.

Рассмотрим традиционный подход к оценке параметров модели с помощью максимизации

апостериорного распределения. Так как логарифм — монотонная функция, то для получения

оценок максимизируем логарифм

ln p(w|D) = −β
2

∑

i∈I
(xT

iw− yi)
2 − α

2
wTw,

равный сумме функции среднеквадратичной ошибки и штрафа за большие значения па-

раметров. Второе слагаемое может рассматриваться как регуляризующий параметр [163].

Таким образом, традиционный подход является частным случаем байесовского.

На рис. 43 показан график правдоподобия моделей для полиномов различной степе-

ни. На рис. 43a изображены данные, сгенерированные полиномиальной моделью степени 5.

Рис. 43b и 43c иллюстрируют значения правдоподобия модели для различных подвыборок

и в среднем.
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Рис. 43. Правдоподобие полиномов различной степени в качестве регрессионных моделей.
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4.1.4. Второй уровень связанного байесовского вывода

При сравнении моделей используется правило бритвы Оккама в следующей формули-

ровке: «Совместный байесовский вывод автоматически количественно выполняет правило

Оккама». Бритва Оккама — принцип предпочтения простых моделей (теорий, гипотез) слож-

ным. Если несколько моделей одинаково хорошо описывают наблюдения, принцип Оккама

рекомендует выбор простейшей модели.

Теорема Байеса говорит о том, что наиболее вероятными будут те модели, которые наи-

более точно прогнозируют появление некоторых данных.

Эта вероятность определяется нормализованной функцией распределения на простран-

стве данных D. Вероятность p(D|fk) появления данных D при фиксированной модели fk

называется правдоподобием модели fk.

Найдем правдоподобие двух альтернативных моделей f1 и f2, описывающих данные D.

По теореме Байеса мы связываем правдоподобие p(f1|D) модели f1 при фиксированных дан-

ных, то есть, вероятность p(D|f1) получения данных с этой моделью и априорное правдопо-

добие p(f1) модели f1. Так как значение нормирующего множителя

p(D) =
K∑

k=1

p(D|fk)p(fk)

для обеих моделей (здесь K = 2) одинаково, то отношение правдоподобия моделей f1 и f2

имеет вид
p(f1|D)

p(f2|D)
=
p(f1)p(D|f1)
p(f2)p(D|f2)

. (113)

Отношение p(f1)
p(f2)

в правой части указывает на то, насколько велико априорное предпочте-

ние модели p(f1) ее альтернативе p(f2). Отношение p(D|f1)
p(D|f2) указывает насколько модель f1

соответствует наблюдаемым данным лучше, чем модель f2.

Выражение (113) вводит правило Оккама следующим образом. Во-первых, можно задать

отношение p(f1)
p(f2)

соответствующее отношению предпочтения моделей или критерию отбора

моделей, на основании некоторой дополнительной информации. Во-вторых, независимо от

предыдущего способа задания критерия отбора моделей, это отношение автоматически вы-

полняет правило Оккама. Действительно, если f2 — более сложная модель, ее плотность

распределения p(D|f2) имеет меньшие значения при том условии, что ее дисперсия больше.

Если невязки, доставляемые обеими моделями равны, простая модель f1 будет более веро-

ятна, чем сложная модель f2. Таким образом, независимо от априорных предпочтений, вво-

дится правило Оккама, согласно которому при равных априорных предпочтениях и равном

соответствии предполагаемых моделей измеряемым данным простая модель более вероятна,

чем сложная.

4.1.5. Функции правдоподобия моделей и данных

При создании моделей различают два уровня байесовского вывода [151, 148, 291]. На пер-

вом уровне предполагается, что рассматриваемая модель адекватна. Находится оценка пара-

метров моделей по регрессионной выборке. В результате получаются наиболее правдоподоб-

ные значения параметров и значения ошибок моделей при этих параметрах. Эта процедура
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повторяется для каждой модели. Задача, решаемая на втором уровне вывода — сравнение

моделей, см. рис. 44. Результатом является упорядоченное множество моделей.

Рис. 44. Использование байесовского вывода при выборе моделей; первый и второй уровень

вывода обведены пунктирной линией.

Каждая модель fk имеет вектор параметров w. Задача первого уровня — получить оценку

параметров w модели при полученных данных D. Согласно теореме Байеса, апостериорная

вероятность параметров w равна

p(w|D, fk) =
p(D|w, fk)p(w|fk)

p(D|fk)
. (114)

Нормирующая константа p(D|fk) обычно не принимается во внимание на первом уровне

вывода. Однако она становится весьма важной на втором уровне вывода. Эта константа

называется правдоподобие модели (англ. «evidence», дословно «достоверность»).

При оценке параметров на практике обычно применяют оптимизационные методы, на-

пример, метод сопряженных градиентов, чтобы получить наиболее вероятные параметры

wMP. При этом различают наиболее вероятные параметры wMP, которые выводятся на пер-

вом уровне как аргумент функции вероятности, и наиболее правдоподобные параметры wML,

которые оцениваются как аргумент функции наибольшего правдоподобия.

Обобщающая способность (иногда называемая прогностической способностью) модели f

оценивается с помощью функции апостериорного распределения параметров модели. Для

оценки используется разложение в ряд Тейлора логарифма апостериорного распределения

функции p(w|D, fk)

p(w|D, fk) ≈ p(wMP|D, fk) exp
(

−1

2
∆wTA∆w

)

,

где ∆w = w−wMP, и отыскивается значение гессиана при значении параметров максималь-

ного правдоподобия wMP в окрестности wMP:

A = −∇2lnp(w|D, fk)|wMP
.

Таким образом, функция апостериорного распределения параметров модели fk может быть

локально приближена с помощью матрицы A−1, которая является оценкой ковариационной

матрицы параметров в окрестности wMP.
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На втором уровне байесовского вывода требуется определить, какая модель наиболее

адекватно описывает данные. Апостериорная вероятность k-й модели задана как

p(fk|D)∝p(D|fk)p(fk). (115)

Следует отметить, что сомножитель p(D|fk), зависящий от регрессионной выборки D, есть

правдоподобие модели fk, которое было названа ранее, в выражении (114), нормирующим

множителем. Правдоподобие модели может быть получена путем интегрирования функции

правдоподобия по всему пространству параметров модели:

p(D|fk) =
∫

p(D|w, fk)p(w|fk)dw.

Второй сомножитель p(fk) в выражении (115) — априорная вероятность на множестве

моделей, определяет, насколько адекватной является модель до того, как появились данные.

Основной проблемой байесовского вывода является отсутствие объективных методов назна-

чения априорной вероятности p(fk). Пусть априорные вероятности p(fk) всех моделей равны.

Тогда модели ранжируются по значениям p(D|fk) их правдоподобия.

Важное предположение, которое необходимо сделать для решения задачи вычисления

правдоподобия, — предположение о том, что распределение p(w|D, fk)∝p(D|w, fk)p(w|fk)
имеет выраженный максимум в окрестности наиболее вероятного значения параметров wMP.

На рис. 45 показана оценка матрицы ковариаций распределения параметров модели. Зе-

леным цветом показана оценка методом Монте-Карло, красным — методом скользящего кон-

троля.

Функцию распределения параметров модели приближают гауссианой, определенной

в пространстве параметров. Для этого используют аппроксимацию Лапласа. Согласно дан-

ному методу, эта функция приближенно равна высоте пика подынтегрального выражения

p(D|w, fk)p(w|fk) умноженной на ширину пика, σw|D:

p(D|fk) ≈ p(D|wMP, fk)p(wMP|fk)σw|D,

правдоподобие модели ≈ правдоподобие данных · множитель Оккама.

Таким образом, правдоподобие модели находится с помощью оценок наибольшего правдопо-

добия параметров модели и множителя Оккама, принимающего значения на отрезке [0, 1],

который штрафует модель fk за ее параметры w. Чем точнее проведена априорная оценка

параметров, тем меньше штраф.

При аппроксимации Лапласа множитель Оккама может быть получен с помощью опре-

делителя ковариационной матрицы параметров

p(D|fk) ≈
p(D|wMP, fk)p(wMP|fk)

√

det
(

1
2π
A
) ,

где

A = −∇2lnp(w|D, fk)|w=wMP

есть гессиан ковариационной матрицы параметров, вычисленный в точке wMP. Алгоритми-

чески байесовский метод сравнения моделей посредством вычисления из правдоподобия не

сложнее, чем задача оценки параметров каждой модели и оценки матрицы Гессе.
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(a) Оценки совместного распределения параметров

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Param value, w1

D
is
tr
ib
u
ti
o
n

 

 

Histogram
CV estimation
MC estimation

(b) Распределение параметра w1 и его оценки
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(c) Распределение параметра w2 и его оценки

Рис. 45. Оценка ковариации параметров модели.
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Итак, для того чтобы отранжировать альтернативные модели fk по предпочтению, необ-

ходимо, воспользовавшись байесовским выводом, вычислить правдоподобие p(D|fk). Байе-

совское сравнение моделей — это расширение метода наибольшего правдоподобия. Правдо-

подобие можно вычислить как для параметрических, так и для непараметрических моделей.

Пример интерпретации множителя Оккама. Переменная σw|D является апостериор-

ной неопределенностью вектора параметров w. Пусть априорное распределение p(w|fk) яв-

ляется равномерным на некотором большом интервале, например, (wMP + 3σw,wMP − 3σw),

и принимает множество значений, которые возможны априори согласно модели fk. То-

гда p(wMP|fk) = σ−1
w , и множитель Оккама равен σ −1

w|Dσw. Множитель Оккама есть степень

сжатия пространства параметров модели при появлении данных [292, 294, 293]. Модель fk

может быть представлена семейством параметрических функций, из которых фиксируется

одна, как только появляются данные. Множитель Оккама есть число, обратное количеству

таких функций (для конечного их числа). Логарифм множителя Оккама есть мера количе-

ства информации о параметрах модели, которая будет получена при появлении данных.

4.1.6. Использование байесовского вывода при выборе моделей

Воспользуемся двухуровневым байесовским выводом для оценки степени предпочтения

порождаемых регрессионных моделей. Рассмотрим конечное множество моделей f1, . . . , fM ,

приближающих данные D, обозначим априорную вероятность i-й модели p(fk). При заданной

регрессионной выборке апостериорная вероятность модели p(fk|D) равна

p(fk|D) =
p(D|fk)p(fk)

∑M
j=1 p(D|fj)p(fj)

, (116)

где p(D|fk) — функция правдоподобия моделей, определяющая, насколько хорошо модель fk

описывает данные D. Знаменатель дроби обеспечивает выполнение условия
∑M

i=1 p(fk|D) = 1.

Сравним две модели с помощью апостериорных вероятностей

p(fk|D)

p(fj |D)
=
p(D|fk)p(fk)
p(D|fj)p(fj)

. (117)

Левая часть выражения называется отношением правдоподобия моделей. Отноше-

ние p(fk)/p(fj) называется отношением апостериорных предпочтений моделей. Полагая апри-

орные вероятности моделей одинаковыми, используем функции правдоподобия для выбора

моделей.

Так как рассматриваемые модели f зависят от параметров, представим их правдоподобие

в виде интеграла по пространству параметров

p(D|f) =
∫

w∈W

p(D|w, f)p(w|f)dw. (118)

Априорная плотность распределения параметров w модели f на выборке D равна

p(w|D, f) = p(D|w, f)p(w|f)
p(D|f) , (119)
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где p(w|f) — априорное распределение параметров, а p(D|w, f) — функция правдоподобия

параметров. Выражения (116) и (119) называются формулами Байесовского вывода первого

и второго уровня.

4.2. Методы аналитической оценки гиперпараметров

Ниже предложен ряд методов оптимизации структурных параметров регрессионной мо-

дели. Описан метод аппроксимации Лапласа функции ошибки для оценки правдоподобия

модели. Предложен метод Монте-Карло оценки правдоподобия модели. Предложен метод

оценки оптимальных параметров модели с помощью процедуры скользящего контроля. Ис-

следованы свойства предлагаемых методов. Проведен вычислительный эксперимент на мо-

дельных и реальных данных. Проведены анализ и сравнение предлагаемых методов.

Предположим, что ненормированное распределение параметров, полученное в предыду-

щем разделе, имеет единственную моду. Используя аппроксимацию Лапласа (145), прибли-

зим функцию плотности нормального распределения эмпирическим распределением для то-

го, чтобы оценить ковариационные матрицы A,B совместно с параметрами w регрессионной

модели. Перепишем в удобном виде функцию правдоподобия (16), функцию априорного и

функцию апостериорного распределения параметров (17), (18), введенные в разделе 1. При

этом полагаем, что модель фиксирована и является обобщенно-линейной. Это позволяет нам

опустить символ f в аргументах функций. Функция правдоподобия данных имеет вид

p(D|w, β) = exp(−ED)

ZD(B)
=

exp
(
−1

2
(y − f)TB(y− f)

)

(2π)
m
2 det

1

2 (B)
, (120)

функция априорного распределения параметров, при предположении о том, что оценка ма-

тожидания вектора параметров равна w0 имеет вид

p(w|A) =
exp(−Ew)

Zw(A)
=

exp
(
−1

2
(w−w0)

T = A(w−w0)
)

(2π)
n
2 det

1

2 (B)
, (121)

а функция апостериорного распределения параметров —

p(w|D,A,B) =
p(D|w,B)p(w|A)

p(D|A,B)
=

exp
(
−S(w|D,A,B)

)

ZS
. (122)

Зафиксируем значение вектора w0, предполагая что он доставляет локальный макси-

мум (122). Для нахождения матриц A,B приблизим фукнцию ошибки S(w|D,A,B) мето-

дом Лапласа. Для этого построим ряд Тейлора второго порядка логарифма числителя ((122))

в окрестности w0:

ln exp
(
−S(w)

)
= ln exp

(

S(w0) + 0 +
1

2
∆wTH∆w + o(||w||3)

)

,

где ∆w = w −w0. При упрощении и отбрасывании малой величины получим

−S(w) ≈ −S(w0)−
1

2
∆wTH∆w. (123)
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В выражении (123) нет слагаемого первого порядка, так как предполагается, что w0 достав-

ляет локальный минимум функции ошибки

∂S(w)

∂w

∣
∣
∣
∣
w=w0

= 0.

Матрица H — матрица Гессе функции ошибок

H = −∇∇S(w)|w=w0
. (124)

Замечание 2. Так как производная первого члена – функции ошибки ED, заданная функци-

ей правдоподобия p(D|w,B), не зависит от параметров модели, то оценка ковариационной

матрицы, полученная с помощью аппроксимации Лапласа будет справедлива для любой ги-

потезы порождения данных рассматривающей распределение из экспоненциального семей-

ства.

Применяя экспоненту к обеим частям выражения (123) получаем требуемое приближение

числителя (122)

exp
(
−S(w)

)
≈ exp

(
−S(w0)

)
exp

(

−1

2
∆wTH∆w

)

. (125)

Таким образом, апостериорное распределение параметров при фиксированных значениях

ковариационных матриц A,B принимает вид

p(w|D,A,B) ≈ exp
(
−S(w0)

)
exp

(
−1

2
∆wTH∆w

)

ZS(A,B)
. (126)

Так как интеграл выражения апостериорного распределения параметров должен рав-

няться единице, ∫

w∈W

p(w|D,A,B)dw = 1,

то нормирующий множитель, полученный посредством аппроксимации Лапласа, равен

ZS = exp
(
−S(w0)

)
(2π)

n
2 det−

1

2 (H). (127)

Для нахождения гиперпараметров максимизируем нормирующую функцию p(D|A,B) из вы-

ражения (122) относительно A и B. Запишем ее в виде

p(D|A,B) =

∫

p(D|w,A,B)p(w|A)dw. (128)

Используя выражения (120) и (121) перепишем (122) в виде

p(D|A,B) =
1

Zw(A)

1

ZD(B)

∫

exp
(
−S(w)

)
dw.

Последнее выражение также можно переписать, используюя нормирующую константу ZS

апостериорного распределения:

p(D|A,B) = Z−1
w (A)Z−1

D (B)ZS.
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Поставим нормирующие выражения в переменные ZD и Zw в формулу (127)

p(D|A,B) = Z−1
w (A)Z−1

D (β) exp
(
−S(w0)

)
(2π)

n
2 det−

1

2 (H).

и прологарифмируем

ln p(D|A,B) =−n
2
ln 2π − 1

2
ln det(A)

︸ ︷︷ ︸

Z−1
w (A)

−

− m

2
ln 2π +

1

2
ln det(B)

︸ ︷︷ ︸

Z−1

D
(B)

−S(w0) +
n

2
ln 2π − 1

2
lndet(H)

︸ ︷︷ ︸

ZS

.
(129)

При упрощении данного выражения, с учетом того, что

2S(w0) = wT

0Aw0 +
(
y − f(w0,X)

)
T

B
(
y − f(w0,X)

)
,

получаем

ln p(D|A,B) =− 1

2
ln det(A)− m

2
ln 2π +

m

2
ln det(B)−

−wT

0Aw0 + (y − fw0
)TB(y− fw0

)
︸ ︷︷ ︸

−S(w0)

−1

2
ln det(H).

(130)

Последнее слагаемое включает гессиан H, определенный в выражении (124).

4.2.1. Процедура оценивания параметров и гиперпараметров

Для оценки структурных параметров необходимо провести процедуру максимизации

правдоподобия модели. Именно эта процедура является наиболее вычислительно затратной.

Оптимальные структурные параметры A,B максимизируют правдоподобие модели

p (D|A,B) =

∫

w∈W

p(D|w,B)p(w|A)dw → max
A∈Mn,B∈Mm

, (131)

где Mn обозначает множество положительно полуопределенных матриц размерности n× n.

Оптимальные значения гиперпараметров α и β — элементов матриц A и B вычисляются

итеративно следующим образом. При фиксированных параметрах w0 находятся оптималь-

ные значения α. С использованием α находятся оптимальные значения β. Далее новые β

определяют новые значения вспомогательной переменной λ. Цикл повторяется до тех пор,

пока изменение значений α, β на соседних шагах не станет менее заранее заданной границы.

Оптимальные значения параметров w переоцениваются с использованием функции ошиб-

ки S(w|D,A,B), определенной числителем (122) при фиксированных на данном шаге зна-

чениях матриц A,B. Таким образом, параметры w и гиперпараметры A,B регрессионной

модели f оцениваются по отдельности. На каждой итерации сначала при фиксированных

значениях гиперпараметров отыскиваются параметры путем оптимизации функции S(w).

При этом используется алгоритм Левенберга-Марквардта или его модификации, описанные

в разделе 1. Затем по формулам, указанным выше, оцениваются матрицы гиперпарамет-

ров A,B.
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Найдем максимум выражения (129) относительно элементов обратных ковариационных

матриц, приравняв его производную поочередно по A и по B к нулю. Три этом рассмотрим

три варианта: матрицы A,B — неотрицательно определенные, общего вида, матрицы A =

diag(α)I и B = diag(β)I — диагональные, матрицы A = αI и B = βI имеют на диагоналях

равные элементы.

4.2.2. Аналитическая оценка ковариационных матриц общего вида

Для того, чтобы оценить структурные параметры A,B совместно с параметрами w ре-

грессионной модели, воспользуемся методом аппроксимации Лапласа функции правдоподо-

бия модели.

В данном параграфе примем нормальную гипотезу распределения зависимой переменной

и априорного распределения параметров модели. Таким образом, для нахождения оптималь-

ных структурных параметров Â, B̂ выражение (131) преобразуется следующим образом:

|B| 12
(2π

m
2 )

|A| 12
(2π

n
2 )

∫

w∈W

exp

(

−1

2
(y − f)TB(y − f)

)

exp

(

−1

2
wTAw

)

dw → max
A∈Mn,B∈Mm

. (132)

Примем за функцию ошибки S(w,A,B) показатель экспоненты выражения (132) с отрица-

тельным знаком:

S(w,A,B) =
1

2
(y − f)TB(y− f) +

1

2
wTAw, (133)

тогда оптимизационная задача (132) перепишется в более удобном виде:

|B| 12
(2π

m
2 )

|A| 12
(2π

n
2 )

∫

w∈W

exp
(
−S (w,A,B)

)
dw → max

A,B
.

Отметим, что оптимальными параметрами ŵ модели f = f(w,X) являются те, которые мак-

симизируют апостериорное распределение параметров или, в нашем случае, минимизируют

функцию ошибки

ŵ = arg min
w∈W

S(w|Â, B̂),

где Â, B̂ — оптимальные структурные параметры, максимизирующие выражение (132).

Метод аппроксимации Лапласа состоит в разложении функцию ошибки S(w) вокруг оп-

тимального значения S(ŵ) для аппроксимации выражения (132):

S(w) = S(ŵ) +
1

2
∆wTH∆w + o(||w||2),

где H — матрица Гессе функции ошибок

H = ∇∇S(w)|w=ŵ

в точке w = ŵ. Здесь и далее под нормой ‖w‖ подразумевается евклидова норма ‖w‖ =

‖w‖2. Вместо оптимизации выражения (132), будем оптимизировать аппроксимированное

выражение
|B| 12
(2π

m
2 )

|A| 12
(2π

n
2 )

exp
(
S(ŵ)

)
∫

w∈W

exp

(

−1

2
∆wTH∆w

)

dw → max
A,B

. (134)
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Отметим, что подынтегральное выражение в (134) является частью нормального распределе-

ния, поэтому весь интеграл в (134) можно заменить на нормировочную константу и получить

оптимизационную задачу вида:

g(A,B) =
|B| 12
(2π

m
2 )

|A| 12
(2π

n
2 )

exp
(
S(ŵ)

)(2π
n
2 )

|H| 12
→ max

A,B
. (135)

Прологарифмируем выражение (135) и будем искать оптимум в виде:

− ln g(A,B) = −m
2
ln(2π) +

1

2
ln |A|+ 1

2
ln |B| − S(w0)−

1

2
ln |H| → max

A,B
. (136)

Для дальнейших рассуждений примем некоторые ограничения на вид матриц A,B, поз-

воляющие упростить вид функции ln g(A,B). В частности, везде далее будем рассматривать

случай скалярной матрицы B = βI.

В случае скалярной матрицы B = βI, функция ошибки (133) запиcывается следующим

образом:

S(w,A, β) =
β

2
(y − f)T(y− f) +

1

2
wTAw = βSD(w) +

1

2
wTAw, (137)

где

SD(w) =
1

2
(y− f)T(y − f), (138)

и гессиан H записывается в виде

H = βHD +A,

где HD — гессиан функции SD(w) в точке w = ŵ.

Функция (136) записывается следующим образом:

− ln g(A, β) = −m
2
ln(2π) +

1

2
ln |A|+ m

2
ln β − β

2

(
y − f (ŵ,X)

)
T
(
y − f (ŵ,X)

)
−

−1

2
ŵTAŵ − 1

2
ln |βHD +A| → max

A,B
.

(139)

Далее, будем рассматривать частные случаи скалярной и диагональной матрицы A, что

позволит дифференцировать слагаемое

1

2
ln |βHD +A| (140)

формулы (139).

4.2.3. Одинаковая дисперсия элементов вектора параметров

Рассмотрим случай одинаковых элементов на диагонали ковариационной матрицы A =

αI. При этом упрощении посчитаем выражение (140):

1

2
ln |βHD + αI| = 1

2

n∑

j=1

ln(βhj + α),

где hj — собственное число матрицы HD.
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Приравняв производные выражения (139) по α и β к нулю, найдем оптимальные значения

структурных параметров α и β.

∂(− ln g(α, β))

∂α
=

n

2α
− ‖ŵ‖2

2
− 1

2

n∑

j=1

1

βhj + α
= 0,

α‖ŵ‖2 = n−
n∑

j=1

α

βhj + α
= β

n∑

j=1

hj
βhj + α

.

Введем обозначение

γ = β

n∑

j=1

hj
βhj + α

, (141)

тогда

α =
γ

‖ŵ‖2 . (142)

Аналогично, приравняв производную выражения (139) по β к нулю, получаем

β =
m− γ

‖y − f(ŵ,X)‖2 . (143)

Поскольку γ является функцией от β и α, а также от оптимального значения параметров

модели ŵ, уравнения (141), (142) и (143) решаются итеративно для фиксированного ŵ.

4.2.4. Независимо-распределенные элементы вектора параметров

В случае A = diag(αj) результаты оказываются сравнимыми с результатами из предыду-

щего параграфа. В частности, вместо выражения (141) примем за ρ величину

ρ = β
n∑

j=1

hj
βhj + αj

,

тогда выражение для β будет таким:

β =
m− ρ

‖y − f(ŵ,X)‖2 ,

а порядок вычисления матрицы A будет состоять из n независимых уравнений:

αj =
βhj
2

(

−1 +

√

1 +
4

βhj‖ŵ‖2

)

.

Полученные выше результаты позволяют сформулировать теорему. Пусть вектор парамет-

ров w0 = [w1(0), . . . , wn(0)]
T фиксирован.

Теорема 8. В окрестности вектора параметров w0 оценка ковариационных мат-

риц A−1,B−1 для гипотезы нормального распределения зависимой переменной имеет вид

αi =
1

2
λi

(√

1 +
4

(wi − wi(0))2λi
− 1

)

, где λi = βdiag(hi),

β =
m− γ

2(f − y)TB′(f − y)
, где γ =

W∑

j=1

λj
λj + αj

.

Последовательности ‖Ak+1−Ak‖2 и ‖βk+1−βi‖2 монотонно убывают с увеличением номера

шага k.
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4.2.5. Получение оценок для линейной модели

В случае линейной модели,

f(w,X) = Xw,

все формулы можно выписать явно, избавив себя от необходимости решать численно опти-

мизационные задачи. Так, интеграл от экспоненты функции ошибки в точности равен
∫

exp
(
−S(w)

)
dw = S(ŵ)(2π)

n
2 (detH−1)

1

2 ,

где ŵ — единственная точка максимума унимодальной функции ошибки S(w), а гессиан

H = A+ βXTX.

При этом для точки максимума ŵ, являющейся точкой наиболее вероятных параметров

ŵ = argmax p(w|D,A,B),

справедливо выражение

ŵ = (A+ βXTX)−1βXTy.

В частности, для случая диагональной матрицы A = diag(αj) можно выписать явные

формулы оценки структурных параметров:

β =
m− ρ

‖y −Xŵ‖2 ,

где вспомогательная переменная ρ зависит от параметров αj и β:

ρ =

n∑

j=1

βhj
αj + βhj

,

а искомый параметр αj выражен как

αj =
βhj
2

(
−1 +

√

1 +
4

βhj‖ŵ‖2
)
.

Здесь hj является j-м собственным числом гессиана H функции ошибки S(w), а в случае

линейной модели — j-м собственным числом матрицы XTX.

4.2.6. Вычисление гессиана

В нелинейном случае гессиан приходится определять численными методами. Для этого

используются два метода: метод аппроксимации вычисления вторых производных функции

ошибки и метод приближения ошибки квадратичной поверхностью.

Метод разностной аппроксимации вычисления гессиана. Элемент hjk гессиана H в

точке ŵ вычисляется по формуле

hjk =
∂2S

∂wj∂wk
=
S(ŵ + (ej + ek)r)− S(ŵ + ejr)− S(ŵ + ekr) + S(ŵ)

r2
,

где ej , ek — единичные векторы, r — малый параметр. Погрешность этой формулы имеет

порядок O(r). Данный метод требует вычисления функции ошибки в n(n+1)
2

точках и является

вычислительно эффективным.
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Метод приближения ошибки квадратичной поверхностью. Предлагаемый метод

является менее вычислительно эффективным, однако более устойчивым. Метод основан на

том, в окрестности оптимальной точки ŵ генерируется множество W размера K, состоящее

из векторов w, близких к ŵ. Для каждого из этих w ∈ W вычисляется значение функции

ошибки S(w).

Таким образом, составляется обучающая выборка (W,y) = {(wl, yl)}Ki=1 размера K, где

yl = 2 (S(wl)− S(ŵ)) .

В точке оптимума ŵ функция ошибки может быть приближена квадратичной поверхностью,

поэтому согласно модели:

yl = (wl − ŵ)TH(wl − ŵ).

Получив таким образом K уравнений, параметры hjk находятся методом наименьших квад-

ратов. Отметим, что для устойчивого решения необходимо значение K ≫ n2, то есть метод

требует больших вычислительных затрат, однако является устойчивым при больших K.

4.2.7. Аппроксимация Лапласа для оценки нормирующего коэффициента

Эмпирическая плотность распределение p∗(w|D), описанная в предыдущем разделе, не

является плотностью распределения случайной величины, поскольку ее интеграл не равен

единице. Так как гипотеза порождения данных предполагает, что параметров обобщенно-

линейных моделей распределены нормально, предлагается аппроксимировать эмпирическое

распределение p∗ нормальным, теоретическим, ниже оно обозначается p̂, найдя при этом

нормирующий множитель, обеспечивающий равенство интеграла единице. Вариант этого

метода для оценки маргинальных распределений опубликован в [394].

Рассмотрим абсолютно непрерывную многомерную случайную величину w и ее плотность

распределения p(w),

p(w) =
1

Zw

p∗(w),

включающая нормирующий множитель Zw заданного эмпирического распределения p∗(w),

Zw
def
=

∫

w∈W

p∗(w)dw

Нормирующий множитель Zw неизвестен, требуется его оценить. Предполагается, что p∗(w)

имеет моду многомерной случайной величины w в точке w0, см. рис 46. Для оценки констан-

ты Zw используем приближение функции p∗(w) нормальным распределением p̂(w), макси-

мум которого совпадает с модой распределения p∗(w). Найдем моду p∗(w), а именно точ-

ку w0, в которой ∇wp(w) = 0, то есть

∂p(w)

∂w

∣
∣
∣
∣
w=w0

= 0.

Для нахождения p(w) = Z−1
w p∗(w) прологарифмируем и разложим p∗(w) в ряд Тейлора

в окрестности предполагаемого максимума w0. Так как ln p∗(w) есть монотонная функция

от p∗(w), то аргумент ее максимума равен аргументу максимума p∗(w).

ln p∗(w) = ln p∗(w0) + 0− 1

2
(w −w0)A(w−w0) + · · · , (144)
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Рис. 46. Приближение эмпирического распределения теоретическим с целью нормировки.

где (n× n)-матрица Гессе

A = [αij ], i, j ∈ J , |J | = n,

определена как

αij = − ∂2 ln p∗(w)

∂wi∂wj

∣
∣
∣
∣
w=w0

,

кратко,

A = −∇∇ ln p∗(w)|w=w0
, здесь ∇ — градиент функции.

Взяв экспоненту разложения, получим

p∗(w) ≈ p∗(w0) exp

(

−1

2
(w−w0)

TA(w−w0)

)

.

Тогда нормальное распределение p̂(w), приближающее нормированное распределение p(w)

имеет вид

p̂(w) = N (w0,A
−1) =

1

(2π)
n
2 det−

1

2A
exp

(

−1

2
(w −w0)

TA(w −w0)

)

,

а нормировочная константа для p∗(w)

Zw ≈ p∗(w0)
(2π)

n
2

det
1

2A
. (145)

4.2.8. Метод Монте-Карло сэмплирования функции ошибки

Ниже описана процедура сэмплирования параметров модели при фиксированных струк-

турных параметрах. Аппроксимируется интеграл значений правдоподобия по сэмплирован-

ным параметрам. Оптимальными структурными параметрами считаются те, которые достав-

ляют максимум аппроксимирующей функции.

Для того, чтобы оценить структурные параметры A и B, согласно байесовскому выводу,

требуется максимизировать интеграл:

∫

w∈W

p(D|w,B)p(w|A)dw → max
A∈Mn,B∈Mm

. (146)

Далее, будем рассматривать случай, когда структурный параметр A является матрицей,

обратной к матрице вторых моментов Σ случайного вектора w, A = Σ−1. Без ограниче-

ния общности, примем E(w) = 0. Этот случай обобщает предположения, введенные нами в

предыдущем разделе, о гипотезе нормального распределения вектора w.
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Отметим, что в наших предположениях задано евклидово пространство случайных векто-

ров w матрицей Грама A−1. Поскольку матрица A−1 является симметричной положительно

определенной матрицей, для нее существует и единственно разложение Холецкого [165]:

A−1 = RTR, (147)

где R — верхняя треугольная матрица со строго положительными элементами на диагонали.

Отметим также, что R является матрицей перехода из евклидового пространства случайных

векторов w0 ∼ p(w0|Σ0) с матрицей ковариаций, или матрицей Грама, Σ0 = I, в пространство

векторов w с матрицей ковариаций Σ.

В силу существования и единственности разложения Холецкого (147) матрицы A−1 будем

искать оптимум (146) в виде
∫

w∈W

p(D|w,B)p(w|R)dw → max
R,B

.

Для дальнейших упрощений ограничим общность нашей задачи, зафиксировав матрицу B =

B0. Будем искать решение в виде
∫

w∈W

p(D|w,B0)p(w|R)dw → max
R

. (148)

Поскольку интеграл (148) нельзя вычислить аналитически, применим стохастический метод

интегрирования по пространству параметров W. Для этого заметим, что выражение (148)

является математическим ожиданием правдоподобия данных:
∫

w∈W

p(D|w,B0)p(w|R)dw = E (p(D|w,B0))

и, согласно закону больших чисел,
∫

w∈W

p(D|w,B0)p(w|R)dw ≈ 1

K

∑

w∈W(R)

p(D|w,B0),

где W(R) — множество мощностиK векторов w с матрицей ковариаций RTR, которое может

быть получено в результате процедуры сэмплирования.

Запишем оценку правдоподобия модели, которую необходимо максимизировать по пара-

метру R:

E(R) ≈ 1

K

∑

w∈W(R)

p(D|w,B0) → max
R

. (149)

Таким образом, для нахождения оптимальных параметров итерируемого значения матри-

цы R оптимизационной задачи (149) для каждого R необходимо провести процедуру сэмпли-

рования параметров W(R). Однако, как было отмечено ранее, матрица R является матри-

цей перехода при преобразовании евклидового пространства с матрицей Грама I в евклидово

пространство с матрицей Грама RTR.

Это означает, что достаточно провести процедуру сэмплирования однократно перед за-

пуском алгоритма оптимизации, получив множество

W0 = W(I) = {w0|w0 ∼ p(w0|I)}.
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Затем, на каждом шаге алгоритма, получать множество W(R) преобразованием множества

W0 по правилу

W(R) = {RTw0|w0 ∈ W0}.

Алгоритм Метрополиса-Гастингса порождения выборки. Для порождения выборки

W0 = {w|w ∼ p(w|I)} используется алгоритм Метрополиса-Гастингса.

Основной идеей алгоритма является сэмплирование выборки, которая образует цепь Мар-

кова, в которой каждый элемент выборки wt+1 коррелирует только с предыдущим элементом

выборки wt.

Для работы алгоритма Метрополиса-Гастингса введем вспомогательное распределение

Q(w|w′), выберем начальный элемент w0 и положим W0 = {w0}. Далее, пусть выбран эле-

мент wt согласно распределению Q(w′|wt). Следующий элемент w′ генерируется случайным

образом. Затем рассчитывается число a — вероятность включения элемента w′ в выборку

W0.

a = min
w′∈Rn

(
p(D|w′,B0)Q(wt|w′)

p(D|wt,B0)Q(w′|wt)
, 1

)

.

С вероятностью a новый элемент w′ становится элементом t+1 выборки W0, иначе элемент

w′ отклоняется, и процедура шага t + 1 повторяется заново:

wt+1 =







w′, с вероятностью a,

wt, с вероятностью 1− a.

Вспомогательное распределение Q(w|w′) примем нормальным:

Q(w|w′) = Q(w′|w) =
1

(2πα−1)
n
2

exp
(

−α
2
(w −w′)T(w−w′)

)

.

То есть, функция Q(w|w′) является симметричной, и

a =
p(D|w′,B0)

p(D|wt,B0)
.

Начальный элемент w0 выбирается случайным образом образом из распределения P (w|I).

Таблица 12. Анализ ошибок: относительное смещение оценок.

Scalar Diag Full
‖ŵ−w∗‖
‖w∗‖

‖Â−A∗‖
‖A∗‖

‖ŵ−w∗‖
‖w∗‖

‖Â−A∗‖
‖A∗‖

‖ŵ−w∗‖
‖w∗‖

‖Â−A∗‖
‖A∗‖

OLS 0.3 - 0.67 - 0.37 -

LA 0.095 0.14 0.54 1.09 - -

MK 0.078 0.16 0.52 0.36 0.34 0.57

CV 0.041 0.39 0.53 0.42 0.36 0.55
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4.2.9. Оценка структурных параметров методом скользящего контроля

В рамках этого методы предполагается, что реализации случайной величины w заданы

составом регрессионной выборки. Каждая реализация является оптимальным значением век-

тора параметров w на соответствующей подвыборке. Будем строить оценку среднего риска

L(w) = ED (SD(w)) ,

где

SD(w) =
1

2
(y− f)T(y − f),

согласно (138). Отметим, что в данном случае функция SD(w) является частью первого

слагаемого функции ошибки S(w) в выражении (137):

S(w) = βSD(w) +
1

2
wTAw,

где второе слагаемое 1
2
wTAw отвечает за априорное распределение параметров модели w.

Согласно [233], для оценивания среднего риска L(w) разделим выборку D на Q непере-

секающихся блоков

D = Dl1
1 ⊔ ... ⊔D

lQ
Q

одинаковых, или почти одинаковых, мощностей l1, ..., lQ соответственно. Обозначим ŵD\Dq
(A)

оценку вектора параметров w путем минимизации функции ошибки (137) на обучающей

подвыборке D\Dq при фиксированной матрице A. Будем минимизировать оценку среднего

риска (обозначим функцию CV — Cross-Validation)

CV(D,A) =
1

m

m∑

i=1

SDq
(ŵD\Dq

(A)) → min
A∈Mn

,

где SDq
(ŵD\Dq

(A)) — функция ошибки, оцененная на контрольной подвыборке Dq при век-

торе параметров ŵ, оцененном на обучающей подвыборке D\Dq при фиксированной матри-

це A. Отметим, что в данном случае матрица B фиксируется, и оптимизация проводится

только по элементам матрицы A.

4.2.10. Анализ метода оценки ковариационных матриц

Предложенные алгоритмы протестированы на синтетических и реальных данных. При-

ведем список данных с подробным описанием.

Линейная полиномиальная модель. Матрица X представляет собой набор полиномов:

столбец i матрицы X является набором точек полинома xi−1 из отрезка [−1, 1]. Первый

столбец матрицы состоит из всех единиц.

Используется линейная модель для генерирования зависимой переменной:

y = Xw + ε,

w ∼ N (0,A), ε ∼ N (0,B).

Матрицы A и B являются диагональными или скалярными матрицами и генерируются по

закону гамма-распределения с параметрами (1,1).
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Рис. 47. Метод аппроксимации Лапласа для линейной полиномиальной модели в случае

диагональной матрицы A.
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Рис. 48. Прогнозирование цен на хлеб, метод аппроксимации Лапласа в случае

диагональной матрицы A.
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Рис. 49. Сходимость структурных параметров A−1 в скалярном случае, A = αI.
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Рис. 50. Сходимость структурных параметров A−1 в диагональном случае.
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Рис. 51. Сходимость структурных параметров A−1.
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Реальные данные: цены на хлеб. Предложенные алгоритмы протестированы на син-

тетических и реальных данных. Ниже показаны графики сходимости оценок параметров и

структурных параметров к оптимальным значениями ŵ, Â сравнение их с истинными оцен-

ками w∗,A∗. Выполнен анализ ошибок. Синтетические данные представляют собой выборку,

сгенерированную линейной полиномиальной моделью:

y =
n∑

j=0

wjx
j + ε,

где

w ∼ N (0,A∗), ε ∼ N (0,B∗) = N (0, β∗I).

Элементы матриц A∗ и B∗ являются наперед заданными величинами.

С помощью предложенных алгоритмов получены оценки Â матрицы A∗ и соответствую-

щего ей оптимального вектора параметров ŵ. В случае аппроксимации Лапласа, получена

также оценка B̂ матрицы B∗. В случае методов Монте-Карло и скользящего контроля мат-

рица B∗ подается в качестве входного параметра.

Результаты работы алгоритмов представлены в таблице 12 в виде нормы относительно-

го отклонения оптимального вектора параметров от истинного значения, ‖ŵ−w∗‖
‖w∗‖ , а также в

виде нормы относительного отклонения оптимального значения матрицы A от ее истинного

значения, ‖Â−A∗‖
‖A∗‖ . В первой строке матрицы записаны результаты OLS — метода наименьших

квадратов оценки вектора параметров w. Жирными выделены значения, наиболее близкие

к истинному вектору параметров w∗ и матрице A∗. Из таблицы видно, что алгоритмы воз-

вращают сравнимые результаты.

Сходимости структурных параметров, элементов матрицы A−1, для всех трех алгоритмов

показаны в скалярном случае на рис. 49, в диагональном случае — на рис. 50, в общем

случае — на рис. 51. По оси абсцисс этих графиков отложены итерации процедуры, по оси

ординат — значения элементов матрицы A.

Из графиков видно, что в скалярном случае (на рис. 49) сходимость наступает после 10-20

итераций. Для диагонального (рис. 50) и полного (рис. 51) случаев требуется гораздо боль-

ше итераций. Особой интерес представляет собой диагональный случай (рис. 50), в котором

появляются нулевые диагональные элементы матрицы A−1. Появление нулевого элемента αj

на диагонали матрицы A означает, что накладывается очень большой штраф на элемент

вектора параметров wj , и оптимальное значение компоненты j вектора параметров ŵ ан-

нулируется, что свидетельствует о неинформативности признака j. Во всех трех случаях,

алгоритмы выделили два из шести признаков (четвертую и пятую степени полинома) как

неинформативные, уменьшив таким образом сложность модели.

4.3. Оценка гиперпараметров для случая линейных моделей

Для линейных регрессионных моделей предлагается явно оценить оптимальное значе-

ние гиперпараметров, используя функцию правдоподобия модели. Полученные оценки ги-

перпараметров могут быть использованы для оценки параметров модели и отбора призна-

ков [158, 294, 279, 151, 148, 28, 84]. Предложенный подход сравнивается с подходом, исполь-
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зующим аппроксимацию Лапласа распределения параметров модели [28] и методом наимень-

ших углов [184]. Приведенная ниже теорема опубликована в работе [9].

Теорема 9. Правдоподобие в предположениях о нормальном распределении шума ε и пара-

метров модели w (см. табл. 1) имеет вид

p(D|A,B) =
|B| 12 |A| 12
(2π)

m
2 |K| 12

exp

(
1

2
yT(CTKC−B)y

)

, (150)

а его логарифм имеет вид

ln p(D|A,B) = −1

2
(ln |K|+m ln 2π − ln |B| − ln |A| − yT(CTKC−B)y) . (151)

Здесь

K = XTBX+A, C = K−1XTB.

Доказательство. Как было сказано ранее,

p(D|A,B) =
∫

Rn

1

(2π)
m
2 |B|− 1

2

exp

(

−1

2
(y −Xw)TB(y−Xw)

)
1

(2π)
n
2 |A|− 1

2

exp

(

−1

2
wTAw

)

dw.

Переписав произведение двух экспонент как экспоненту от их суммы, получаем

p(D|A,B) =

∫

Rn

|B| 12 |A| 12
(2π)

n+m
2

exp

(

−1

2
((y −Xw)TB(y −Xw) +wTAw)

)

dw.

Раскроем скобки:

p(D|A,B) =

∫

Rn

|B| 12 |A| 12
(2π)

n+m
2

exp

(

−1

2
(wTXTBXw− 2wTXTBy + yTBy +wTAw)

)

dw.

Введем обозначения K = A+XTBX,C = K−1XTB и выделим полный квадрат по (w−Cy):

p(D|A,B) =

∫

Rn

|B| 12 |A| 12
(2π)

n+m
2

exp

(

−1

2
((w −Cy)TK(w −Cy)− yT(CTKC−B)y)

)

dw.

Учитывая, что интеграл по плотности многомерного нормального распределения равен еди-

нице, получаем

p(D|A,B) =
|B| 12 |A| 12
(2π)

m
2 |K| 12

exp

(
1

2
(yT(CTKC−B)y)

)

.

Следовательно, искомое правдоподобие модели p(D|A,B) имеет вид (150), а его логарифм —

вид (151).

Рассмотрим теперь случай, когда матрица A — диагональная, а матрица B = βI.

Следствие 1. Если матрица A — диагональная, а матрица B имеет вид B = βI, то

логарифм правдоподобия модели ln p(D|A,B) имеет вид

ln p(D|A, β) = −1

2

(
ln |K|+m ln 2π −m ln β − ln |A| − βyT(βXK−1XT − I)y

)
,

где K = A+ βXTX.
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4.3.1. Вычисление производной функции правдоподобия модели

Для поиска максимума правдоподобия будем пользоваться градиентными методами оп-

тимизации [89], поэтому нам понадобится выражения для производных ln p(D|A,B) по ги-

перпараметрам A,B.

Пусть матрица A имеет вид A = {αij}, i, j = 1, n, а матрица B имеет вид B = {βij}, i, j =
1, m. Обе матрицы являются симметричными и неотрицательно определенными, так как

являются матрицами ковариации.

Верны следующие два свойства производных матриц [336]. Для симметричной матрицы

M верно, что
∂ ln |M|
∂t

= tr

(

M−1∂M

∂t

)

,

где t — некоторый параметр, M = M(t). Так же верно, что

∂M−1

∂t
= −M−1∂M

∂t
M−1.

Введем обозначение Sij — такая матрица, что для двух индексов k, l выполнено, что

Sijkl =







1, k = i, l = j или k = j, l = i,

0, иначе.

Запишем производную ln p(D|A, β) по βij :

∂ ln p(D|A,B)

∂βij
= −1

2

(

tr
(
K−1XTSijX

)
− tr

(
B−1Sij

)
−

yT
(
SjiXK−1XTB+BTXK−1XTSij−

BTXK−1XTSijXK−TXTB

− Sij
)
y
)

.

Аналогично запишем производную ln p(D|A, β) по αij :

∂ ln p(D|A,B)

∂αij
= −1

2

(

tr
(
K−1Sij

)
− tr

(
A−1Sij

)
+

yTBTXK−1SijK−TXTBy
)

.

Так же запишем производные в предположениях следствия 1,

A = diag(α1, α2, . . . , αn), B =
1

β
I :

∂ ln p(D|A, β)
∂β

= −1

2

(

tr
(
K−1XTX

)
− m

β
+

yT(2βXK−1XT − I− β2XK−1XTXK−1XT)y
)

∂ ln p(D|A, β)
∂αi

= −1

2

(

tr
(
K−1Iii

)
− 1

αi
− β2yTXK−1IiiK−1XTy

)

.
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Так как получены значения производных правдоподобия модели ln p(D|A,B) по гипер-

параметрам A,B, можно использовать любой градиентный метод оптимизации для поиска

гиперпараметров A,B, максимизирующх правдоподобие модели.

Будем говорить, что задана модель линейной регрессии f , если задано подмножество при-

знаков If ⊆ I = {1, 2, . . . , n}. Полученные значения гиперпараметров αi для диагональной

матрицы A могут быть использованы для отбора признаков и выбора модели линейной ре-

грессии. Параметры wi модели f сравниваются, используя оценки значений гиперпараметров

αi. Большие значения гиперпараметра αi означают большой штраф на значение параметра

и, следовательно, меньшую значимость параметров модели. Малые значения αi показывают

большую значимость данного компонента модели для ее качества.

4.3.2. Отбор шумовых и коррелирующих признаков

Результатом вычислительного эксперимента является отбор шумовых и коррелирующих

признаков. Тестирование алгоритма производится на временном ряде продаж нарезного хле-

ба в зависимости от времени. Ряд содержит 195 записей. Модель, аппроксимирующая ряд:

y = 0.2256 + 0.1996ξ + 0.0496 sin(10ξ), где ξ ∈ Rn — регрессионная выборка. Введем следую-

щие обозначения: ξ0, ξ
1 — значение каждого элемента выборки в нулевой и первой степени

соответственно, sin(10ξ) — поэлементное применение элементарной функции к вектору ξ.

Пусть матрица плана X представлена в следующем виде X = [χ1, . . . ,χn], где χ ∈ Rm.

В данном случае она состоит из трёх столбцов: ξ0, ξ
1, sin(10ξ).

Отбор шумовых признаков. Шумовая выборка сформирована при помощи добавления

столбца случайных чисел с нормальным распределением. Модель, аппроксимирующая дан-

ные в эксперименте: y = w1χ1 + w2χ2 + w3χ3 + w4χ4, где χ1 = ξ0, χ2 ∼ N (0, 2), χ3 = ξ1,

χ4 = sin(10ξ). При наличии в выборке шумового элемента процедура сходится за восемь

итераций. На рис. 52 проиллюстрированы изменения матрицы Гессе H на каждом шаге про-

цедуры.
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Рис. 52. Итерационная процедура вычисления матрицы Гессе, случай шумового параметра.

На второй итерации наблюдается резкое отличие диагонального элемента (2, 2). В тече-

ние итераций 2 и 3 он продолжает возрастать, пока не достигает критической относитель-
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ной величины (принята эмпирическая оценка отношения максимального элемента матрицы

к минимальному 106). Далее на 4-й итерации выполняется его зануление. Таким образом

происходит выявление шумового признака.
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Рис. 53. Сходимость гиперпараметров: шумовые параметры.

На рис. 53a и 53b представлены диагональные элементы матрицы A. Первый график

иллюстрирует изменения второго диагонального элемента α2, который соответствует шумо-

вому параметру модели. Резкий скачок объясняется тем, что на данной итерации алгоритм

находится вблизи локального минимума w0 и, несмотря на возрастание диагональных эле-

ментов матрицы H, знаменатель формулы (135) мал. Далее происходит зануление элементов

матрицы Гессе и соответствующий гиперпараметр α становится равным нулю.

На графиках рис. 53c и 53d представлены скалярный гиперпараметр β и процедура измене-

ния параметров модели wi соответственно.
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Отбор коррелирующих признаков. Выборка с коррелирующими признаками сформи-

рована при помощи добавления в матрицу плана столбца 1.3χ2. Таким образом, модель,

аппроксимирующая данные в эксперименте: y = w1χ1 + w2χ2 + w3χ3 + w4χ4, где χ1 = ξ0,

χ2 = ξ1, χ3 = 1.3ξ1, χ4 = sin(10ξ). На рис. 54 поэлементно проиллюстрирована матрица

Гессе H.
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Рис. 54. Итерационный процедура вычисления матрицы Гессе, случай коррелирующих

параметров.

При наличии коррелирующих признаков также наблюдается возрастание диагональных

элементов. Это происходит из-за того, что алгоритм выбирает ближайший вектор χ к век-

тору y (в пространстве векторов матрицы X), а коррелирующий с ним считает шумовым.

На графиках рис. 55a и 55b представлены диагональные элементы матрицы A.

На рис. 55c представлены изменения скалярного гиперпараметра β. На рис. 55d представле-

ны изменения параметров модели wi в течение итерационной процедуры. Коррелирующий

параметр w2 сначала возрастает, а затем стремится к нулю. Это происходит из-за того, что

пространство параметров модели многоэкстремально.

В работе предложен способ отсеивания шумовых и коррелирующих признаков, а так-

же алгоритм оценки ковариационной матрицы параметров модели. Данный алгоритм имеет

следующие преимущества перед методами, описанными во введении: 1) нет необходимости

разделения данных на обучающую и контрольную выборку; 2) алгоритм не содержит ника-

ких параметров, которые необходимо оценивать или задавать дополнительно (как, например,

в методах регуляризации); 3) добиваясь сходимости как параметров, так и гиперпараметров,

предложенный алгоритм повышает устойчивость выбранной регрессионной модели.

4.4. Выбор многоуровневых моделей

Обсуждается метод выбора активного набора признаков и фильтрации объектов выбор-

ки при восстановлении регрессии. Предполагается, что элементы рассматриваемой выборки

естественным образом были разбиты на подмножества; для каждого из которых имеется

своя, отличная от других, гипотеза порождения данных. Задача заключается в том, чтобы

определить это разбиение и восстановить регрессионную модель для каждой подвыборки.
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Рис. 55. Сходимость гиперпараметров: коррелирующие параметры.
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При этом оценивается ковариационная матрица параметров каждой модели, и на основа-

нии анализа этой матрицы определяется вероятность принадлежности некоторого объекта

данной подвыборке, а и некоторого признака — данной модели.

Работа опирается на следующие результаты. Предположим, что измеряемых свободных

переменных недостаточно для восстановления адекватной регрессионной модели. Для попол-

нения их набора используем порождающие функции и вводим при этом меры их структурной

сложности, аналогичные предложенным Е.Владиславлевой [390].

В работе мы исходим из того, что процедура скользящего контроля недостаточно эффек-

тивна при решении прикладных задач. В случае, когда число измеряемых или порожден-

ных признаков многократно превосходит объем выборки, однократное разбиение выборки

не исключает переобучения модели и приводит к тому, что выборку приходится разбивать

на несколько подвыборок: обучающую, тестовую, контрольную и так далее, как показано

C. Ватанабе [391] и С. Арло [127].

Для выбора адекватной регрессионной модели используется функция правдоподобия мо-

дели, см. Д. МакКай [291]. Эта функция является составной частью связанного байесов-

ского вывода, см. К. Бишоп [149]. Её использование согласуется с принципом минималь-

ной длины описания, являющимся универсальным критерием выбора модели, см. П. Грюн-

вальд [218, 222]. Для оценки вероятности принадлежности признаков и объектов выборки

к тем или иным моделям используются методы анализа ковариационных матриц, рассмот-

ренные Дж. Нельдером [280]. Для оценки сходства двух и более моделей используется рас-

стояние Дженсена-Шеннона, см. [283].

Предлагаемый метод заключается в следующем. Фиксируется класс моделей; порождает-

ся множество производных признаков. Индексы элементов выборки разбиваются на подмно-

жества. Каждое из подмножеств соответствует модели. Число моделей выбирается таким,

чтобы расстояние между моделями было статистически значимым [283]. Принадлежность

элемента выборки к модели определяется по результатам анализа ковариационной матрицы

зависимых переменных. Структура модели определяется по результатам анализа ковариа-

ционной матрицы параметров модели.

Результатом является многоуровневая модель оптимальной сложности — набор адекват-

ных регрессионных моделей, описывающих выборку. В качестве иллюстрации приведена за-

дача прогнозирования периодических временных рядов.

4.4.1. Выбор модели и фильтрация объектов

Линейная модель f однозначно задается активным множеством индексов признаков A ⊆
J . Предполагая частичную гомоскедаксичность выборки (например, среди объектов встре-

чаются выбросы, которые должны быть исключены из рассмотрения), зададим «фильтро-

ванную» выборку, иначе — активное множество объектов индексами B ⊆ I. Обозначим

множество многомерных величин {xi|i ∈ B} как xB. Задача выбора модели имеет вид

F ∋ f̂ = arg max
A⊆J ,B⊆I

E
(
f(wA,x

B)
)
. (152)

Способы решения этой задачи рассмотрены автором в [379]. Заметим, что для набору ин-

дексов признаков J мощности n соответствуют 2n вершин двоичного куба. Каждая вершина
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задает некоторый активный набор признаков A: считается, что j-й признак вошел в набор,

если значение j-й координаты вершины единица. При решении задачи мы руководствуемся

следующими предположениями:

1) среди вершин куба существует по крайней мере одна, обозначим ее Â, доставляющая

матожидание правдоподобия модели,

2) от вершины A = ∅ к вершине Â есть путь по ребрам куба (иначе — стратегия последо-

вательного добавления-удаления признаков), который доставляет правдоподобию моде-

ли E (f(wA,x)) сходимость по вероятности.

Множество индексов B задает выпуклую комбинацию {xi|i ∈ B} — область XA, «по

крайней мере», в которой значения дисперсии {βi|i ∈ B} зависимых переменных {yi|i ∈ B}
меняются «незначительно». Другими словами, третий центральный момент, или коэффици-

ент асимметрии случайной величины y, соответствующей области XA равен нулю [339].

4.4.2. Алгоритм выбора многоуровневых моделей

Многоуровневой [339, 283, 280, 222, 347, 379, 381] моделью f называется набор моделей f =

{fk|f ∈ F}, k = 1, . . . , l, такой, что

fk : Wk × XBk
→ YBk

,

при разбиении I ⊇ B∗ = ⊔Bk.

Введем функцию расстояния ρ(fk, fl) между двумя моделями. Для этого используем

дивергенцию Дженсена-Шеннона, в которой ρkl ∈ [0, 1] является метрикой [283]:

ρ(pk‖pl) = 2−1DKL (pk‖p′) + 2−1DKL (p′‖pl),

где p′ = 2−1(pk+pl) и здесь pk
def
= (p(wA|D,A,B, fk). Несимметричная функция расстояния —

дивергенция Кулльбака-Лейблера задана как

DKL (p‖p′) =
∫

w∈W

p′(w) ln
p(w)

p′(w)dw
.

Отметим, что расстояние вводится только на моделях, имеющих одинаковый набор призна-

ков A.

Задача нахождения многоуровневых моделей ставится следующим образом:

F ⊃ f̂ = arg max
B1,B2⊂B

ρ(f1, f2) (153)

при заданном множестве индексов признаков Â, таком, что

Â = argmax
A⊆J

E
(
f1(wA,x

B1)
)
E
(
f2(w

′
A,x

B2)
)
.
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4.5. Маргинальные смеси моделей

4.5.1. Смеси линейных моделей

Рассмотрим K линейных моделей, каждая из которых имеет параметры wk ∈ Rn.

Предположим, что для каждой модели дисперсия регрессионных остатков равна β. Тогда

распределение зависимой переменной y для смеси нормальных распределений может быть

записано в виде

p(y|θ) =
∑

k=1

KπkN (y|wT

kx, β
−1) =

1

(2π)n/2|Σ|1/2 e
− 1

2
(x−µ)⊤Σ−1(x−µ).

Здесь вектор параметров θ есть набор всех параметров данного приложения, присоединен-

ных векторов

θ = [w1, . . . ,wk,π, β]
T,

в котором

w1, . . . ,wk — параметров каждой из k моделей,

π = [π1, . . . , πk] — весов моделей,

β — структурного параметра.

Логарифм функции правдоподобия предыдущего выражения при заданной выборке D =

{(yi,xi)} = (y,X) имеет вид

ln p(y|θ) =
m∑

i=1

ln

(
K∑

k=1

πkN (y|wT

kx
i, β−1)

)

.

Для максимизации этой функции будем использовать EM-алгоритм для смесей нормального

распределения (безусловных). Используем набор Z = {z1, . . . zm} векторов скрытых перемен-

ных, где zi ∈ {0, 1}K. Все компоненты вектора zi = [zi1, . . . , z
i
k]

T равны нулю, кроме одной,

например, с номером k. Равенство этой компоненты единице означает, что данный элемент

выборки принадлежит k-й модели.

Логарифм функции правдоподобия совместного распределения переменных y, Z имеет

вид

ln p(y, Z|θ) =
m∑

i=1

K∑

k=1

zik ln
(
πkN (yi|wT

kx
i, β−1)

)
.

Для оценки вектора параметров θ и матрицы Z, описывающей принадлежность объек-

тов моделям, используется EM-алгоритм. Назначаются начальные параметры θ0 На E-шаге

алгоритма эти параметры используются для вычисления вероятности принадлежности каж-

дого элемента выборки одной из K моделей. Введем матрицу Γ, состоящую из элементов γik,

которые интерпретируются как (математическое ожидание принадлежности i-ого элемента

выборки j-й модели,

γik = E(zik) = p(k|xi, θ0) =
πkN (yi|wT

kx
i, β−1)

∑

k′ π
′
kN (yi|wT

kx
i, β−1).
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Полученный результат является апостериорное вероятностями того, что каждый i-й эле-

мент выборки порожден k-й моделью.

Используем матрицу Γ = [γik] для определения принятого апостериорное распределе-

ния p(Z|y, θ0) функции правдоподобия общего вида, которая записывается как

Q(θ, θ0) = EZ(ln p(y, Z|θ)) =
∑

i∈I

K∑

k=1

γik
(
ln πk + lnN (yi|wT

kx
i, β−1).

)

На M-шаге алгоритма максимизируем функцию Q(θ, θ0) относительно θ при фиксирован-

ных значениях матрицы Γ. При оптимизации относительно коэффициентов πk, включенных

в вектор θ, требуется соблюдение условия нормировки коэффициентов
∑K

k=1 πk = 1, которое

может быть получено путем введения множителя Лагранжа. При этом весовые коэффици-

енты моделей заданы в виде

πk =
1

n

m∑

i=1

γik.

Максимизируем предыдущее выражение относительно вектора параметров wk модели с

номером k. Делая подстановку нормального распределения, видим, что функция Q(θ, θ0)

принимает вид

Q(θ, θ0) =
∑

i∈I
γik

(

−β
2
(yi −wT

kx
i)2
)

+ const.

Константа в данном выражении означает вклад в функцию Q параметров wk 6= wj моделей с

индексами, отличными от k. Таким образом, максимизируется взвешенная сумма квадратов

регрессионных остатков одной-единственной модели. При этом каждому элементу выборки

с номером i соответствует весовой коэффициент βγik

4.5.2. Смеси обобщенно-линейных моделей

Оценка принадлежности каждого элемента выборки одной из моделей производится ана-

логично предыдущему примеру, с учетом иной гипотезы порождения данных. Изменим пред-

положение о нормальном распределении многомерной случайной величины — зависимой пе-

ременной на предположение о биномиальном распределении. Тогда условное распределение

этой переменной для вероятностной смеси из K моделей будет иметь вид

p(y|x, θ) =
K∑

k=1

πkσ(w
T

kx)
y
k(1− σ(wT

kx)k)
1−y

Здесь вектор параметров θ есть набор всех параметров данного приложения, присоеди-

ненных векторов

θ = [w1, . . . ,wk,π]
T,

в котором

w1, . . . ,wk — параметров каждой из k моделей,

π = [π1, . . . , πk] — весов моделей.
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Для заданной выборки {yi,xi} функция правдоподобия имеет вид

p(y|θ) =
∏

i∈I

(
K∑

k=1

πkσik
y(1− σ1−yi

ij ),

)

здесь σik = σ(wT

kx
i) — логистическая функция активации в данной модели, σ(·) = 1/(1 +

exp(−1·)
Максимизируем эту функцию правдоподобия итеративно с помощью EM-алгоритма, ис-

пользую введенную ранее скрытую переменную znk. Полная функция правдоподобия для

смеси из K моделей имеет вид

p(y, Z|θ) =
∏

i∈I

∏

k = 1K
(

πkσ
yi

ik(1− σik 1− yi)
)

zik,

здесь Z — матрица латентных переменных с элементами zik. Зададим начальное значение век-

тора параметров θ0. На E-шаге этот вектор используется для нахождения логарифмической

функции правдоподобия, которая от этого вектора зависит, заданной как

Q(θ, θ0) = EZ (ln p(y, Z|θ) =)
∑

i∈I

K∑

k=1

γnk (ln πk + yi ln σik + (1− yi) ln(1− σik)) .

На M-шаге функция правдоподобия максимизируется относительно θ при заданном θ0,

значения матрицы Γ зафиксированы. Как и ранее, максимизация функции относительно θk

может быть выполнена с использованием множителя Лагранжа, для выполнения условия

нормировки
∑K

k=1 πk = 1. При этом значения весового коэффициента π вычисляются как

πk =
1

m

∑

i∈I
γik.

Оценим набор параметров {wk}, k = 1, . . . , K смеси моделей. Заметим, что логарифмиче-

ская функция правдоподобия Q(θ, θ0) включает для каждого индекса k только один из век-

торов {wk}. То есть, различные векторы wk не связаны на M-шаге алгоритма. На этом шаге

решение может быть получено методом итеративного перевзвшивания наименьших квадра-

тов.

Градиент и гессиан вектора параметров wk задан выражением

∇kQ =
∑

i∈I
γik(yi − σik)x

i,

Hk = −∇k∇kQ =
∑

i∈I
γikσik(1− σik)x

ixi
T

.

Здесь ∇k обозначает градиент для вектора параметров wk. Для фиксированного значения γik

градиенты не зависят от параметров {wl}, k 6=l, то есть имеется возможность получить ре-

шение для каждого вектора wk с помощью алгоритма итеративного перевзвешивания. Это

означает, что на М-шаге происходит оценка параметров каждой из моделей логистической

регрессии, независимо от остальных. При этом каждому элементу выборки поставлен в со-

ответствие вес γik.
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4.5.3. Иллюстрация: прогнозирование периодических временных рядов

Примем следующую гипотезу порождения данных: y ∼ N (f ,B) из которой следует w ∼
N (wMP,A). Тогда, при отсутствии гипотезы гомоскедаксичности регрессионных остатков и

независимости элементов многомерной случайной величины y, оптимизируемая функция S

будет иметь вид

2S(w|D, f) =(w −wMP)
TA(w−wMP)+

+ (f − y)TB(f − y).
(154)

Учитываются также следующие предположения:

1) существуют несколько типов периодов, каждый из которых должен быть спрогнозирован

своей собственной моделью,

2) не все фазы периода должны быть включены в модель.

Опишем предлагаемый алгоритм решения задачи (152).

1. Задаются единичные ковариационные матрицы A,B.

2. Для фиксированных значений матриц A,B оцениваются параметры wMP модели f . При

этом оптимизируется функция (154).

3. Оцениваются ковариационные матрицы A,B согласно гипотезе порождения данных.

4. Последние два шага повторяются до сходимости: пока изменение элементов матрицA,B

не будут меньше заданных.

5. Выбираются те признаки A и объекты B, которым соответствует наибольшие значения

диагональных элементов матриц A,B соответственно.

6. Мощности множеств A,B выбираются такими, чтобы они доставляли максимум функ-

ции правдоподобия (35).

Алгоритм решения задачи (153) состоит из двух основных шагов. Модели, включенные

в f заданы разбиением множества индексов B1⊔B2, имеют различные ковариационные мат-

рицы B1,B2 и общий набор признаков A.

1. Решается задача максимизации правдоподобия f на множестве A как в предыдущем

алгоритме; разбиение B фиксировано.

2. Решается задача максимизации расстояния ρ(f1, f2). Для этого значения диагональных

элементов B1,B2 упорядочиваются по убыванию. Выполняется обмен b1, b2 индексами

из разбиения B1,B2, соответствующими наименьшим значениям диагональных элемен-

тов. Числа b1, b2 выбираются такими, что расстояние ρ(f1, f2) между двумя моделями

было максимально.
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Рассмотренный метод позволяет решать задачу совместного выбора признаков и объек-

тов как для одной регрессионной модели, так и для их набора. При этом особое внимание

уделяется принятию статистических гипотез и, как следствие, корректности использования

функций качества, с помощью которых отыскиваются оптимальные, а данном случае наи-

более вероятные параметры моделей, а также их матрица их ковариаций.
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5. Выбор моделей для данных в разнородных шкалах и

экспертных оценок

В этом разделе описан способ построения интегральных индикаторов качества [18] слож-

ных объектов с использованием экспертных оценок. Интегральные индикаторы вычисляются

как линейная комбинация показателей объектов [52]. Используются экспертные оценки ка-

чества объектов и важности показателей, которые корректируются в процессе вычисления.

Для сравнения с предлагаемым методом приведены известные методы построения интеграль-

ного индикатора «без учителя» и «с учителем». Для построения интегральных индикаторов

необходимы как экспертные оценки качества объектов, так и объективные, измеряемые по-

казатели — описания объектов. Роль экспертной оценки в данной работе велика. Эксперт

устанавливает критерий, по которому оценивается объект, определяет множество сопоста-

вимых по данному критерию объектов и выставляет оценки каждому объекту. Проблемам

получения адекватных экспертных оценок посвящена работа [65].

Для принятия решений при администрировании объектов управления, например, госу-

дарственных заповедников, регионов Российской Федерации или объектов финансирования,

часто используются интегральные оценки качества или оценки эффективности управления

объектами [56, 15, 13, 57]. «Качество — совокупность свойств объекта, обусловливающих

его способность удовлетворять определенные потребности в соответствии с его назначени-

ем» [72]. Интегральный индикатор число, поставленное в соответствие объекту и рассматри-

ваемое как оценка его качества.

При построении интегральных индикаторов, во-первых, выбирается критерий качества

объектов [61]. «Критерий — признак, на основании которого производится оценка (напри-

мер, оценка качества системы, ее функционирования), сравнение альтернатив (т.е. эффек-

тивности различных решений), классификация объектов и явлений» [72]. Во-вторых, фор-

мируется набор объектов, сравнимых в контексте выбранного критерия. В-третьих, фор-

мируется набор из тех показателей, которые эксперт считает необходимыми для описания

этого критерия. После этого составляется таблица «объект-признак». Предполагается, что

в этой таблице нет объектов-выбросов (способы их обнаружения описаны в работе [61]) и

пропущенных значений. Показатели приведены к единой шкале и соответствуют принципу

«чем больше, тем лучше»: большему значению показателя (при прочих равных) соответ-

ствует большее значение интегрального индикатора. Предполагается, что мультиколлинеар-

ность показателей отсутствует или невысока [23, 182, 134]. Ранее было предложено несколько

подходов к построению интегральных индикаторов [54, 53, 56, 46, 303]. Подход «без учите-

ля» заключается в нахождении интегральных индикаторов с помощью описаний объектов

и выбранного метода их построения. Приведем в качестве примера построение интеграль-

ного индикатора методом главных компонент, согласно которому интегральный индикатор

является проекцией векторов-описаний объектов на первую главную компоненту матрицы

«объект-признак» [50, 256, 250]. В статье [370] рассматриваются также такие методы постро-

ения интегральных индикаторов «без учителя», как Парето-расслоение и метрический метод.

Подход «с учителем» использует кроме описаний объектов экспертные оценки их качества

или оценки важности показателей и заключается в нахождении компромисса между ними
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и вычисленными индикаторами. Ранее был предложен подход, в котором восстанавливается

регрессия описаний объектов на экспертные оценки качества объектов [81]. Экспертные оцен-

ки могут быть выставлены в линейных или в ранговых шкалах. В некоторых случаях [65]

эксперты не могут выставить оценки в линейных шкалах. Поэтому данная работа посвящена

уточнению экспертных оценок, выставленных в ранговых шкалах. Предлагаемый метод за-

ключается в следующем. Принята линейная модель зависимости интегрального индикатора

от весов показателей. Экспертные оценки весов показателей задают выпуклый многогранный

конус, а матрица «объект – признак» — линейное отображение этого конуса из пространства

показателей в пространство интегральных индикаторов. Полученный в результате отобра-

жения конус может пересекаться с конусом, заданным экспертными оценками интегрального

индикатора. В этом случае экспертные оценки показателей и объектов считаются непроти-

воречивыми и отыскивается наиболее устойчивый интегральный индикатор. В противном

случае выполняется описанная ниже процедура рангового уточнения оценок. Данный метод

рассматривает оценки, выставленные одним экспертом. Если оценки выставлены группой

экспертов, их следует привести к согласованному виду [60], например, посредством вычис-

ления медианы Кемени.

5.1. Регрессионная модель согласования экспертных оценок

Задано множество Υ = {υ1, ..., υm} объектов и множество показателей Ψ = {ψ1, ..., ψn}.
Произвольный объект υi описывается с помощью вектора-строки xi = 〈xi1, xi2, ..., xin〉 : xi ∈
Rn. Множество измерений представляется в виде матрицы исходных данных, обозначаемой

X = {xij}m,ni,j=1 в пространстве действительных чисел: X ∈ Rm×n. Элемент xij — значение j-го

показателя ψj для i-го объекта υi.

Интегральным индикатором объекта υi ∈ Υ с номером i называется скаляр yi, постав-

ленный в соответствие набору xi описаний объекта. При рассмотрении множества объектов Υ

вектор y = 〈y1, ..., ym〉T : y ∈ Rm считается интегральным индикатором множества объектов,

описанных матрицей X = {xi}mi=1 : X ∈ Rm×n.

Объект υi, имеющий максимальный по значению интегральный индикатор (наибольшую

экспертную оценку, если она рассматривается в качестве интегрального индикатора) yi =

max{y1, ..., ym} считается наилучшим. Показатель ψj , имеющий максимальный по значению

вес (наибольшую экспертную оценку, если она рассматривается в качестве веса показателя)

wj = max{w1, ..., wn} считается наиважнейшим при нахождении интегрального индикатора.

Таким образом выполнено предложение

xξζ = max{xiζ}mi=1⇒yξ = max{y1, ..., ym},
xηϑ = min{xiϑ}mi=1⇒yη = min{y1, ..., ym}.

(155)

Векторы χj = 〈x1j , ..., xmj〉T : χj ∈ X нормированы так, что выполняется равенство

xij = 1− |xij − xoptj |
max([xoptj −min(χj)], [max(χj)− xoptj ])

, i = 1, ..., m, j = 1, ..., n, (156)

где оптимальное значение opt(χj) : min(χj) 6 opt(χj) 6 max(χj) задано.
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5.1.1. Базовая модель построения интегральных индикаторов

Основная идея методов нахождения интегрального индикатора «без учителя» заключа-

ется в том, что наилучшим считается i-й объект с максимальными значениями показателей

(обозначим ее “tbtb” — the bigger the better). Объект с наибольшим интегральным индика-

тором при выполнении условия (156) имеет значения показателей x̄i = {1, 1, ..., 1}. Сильная

сторона данной идеи в ее простоте и универсальности. Слабая сторона идеи заключается

в том, что она предполагает определенную линейную зависимость между столбцами мат-

рицы X. Например, оценивая объекты, которым соответствует матрица X = {xij}2,mi,j=1 при

коэффициенте корреляции между ее столбцами r1,2 = −1, эксперт, который ориентируется

на гипотезу “tbtb”, скажет, что данные противоречивы.

Задана таблица описаний объектов — матрица X = {xij}m,ni,j=1, X ∈ Rm×n. Элемент мат-

рицы xij — значение j-го показателя i-го объекта. Вектор xi = 〈xi1, ..., xin〉 — описание i-го

объекта. Для краткости объектом далее будет называется непосредственно сам вектор xi.

Интегральный индикатор объекта — линейная комбинация вида

yi =
n∑

j=1

wjgj(xij), (157)

где gj — функция приведения показателей в единую шкалу:

gj : xij 7→ (−1)sj
xij −mini xij

maxi xij −mini xij
+ sj . (158)

Модификатор sj назначается равным единице, если оптимальное значение j-го показателя

минимально, и нулю, если оптимальное значение показателя максимально. Если знаменатель

дроби (158) равен нулю для некоторых значений индекса j, то соответствующий признак

исключается из дальнейшего рассмотрения.

При выполнении условия (158) интегральный индикатор будет иметь вид

y = Xw,

где вектор интегральных индикаторов y = 〈y1, . . . , ym〉T и вектор весов важности показа-

телей w = 〈w1, . . . , wn〉T. Для построения интегрального индикатора требуется найти веса

важности показателей.

5.1.2. Критерий наибольшей информативности

Рассмотрим алгоритм получения интегрального индикатора «без учителя». Метод глав-

ных компонент, используемый для вычисления интегральных индикаторов [380], заключает-

ся в том, что к множеству описаний объектов применяется преобразование вращения, кото-

рое соответствует критерию наибольшей информативности C. Р. Рао [335]. Согласно этому

критерию, наибольшая информативность есть минимальное значение суммы квадратов рас-

стояния от описаний объектов до их проекций на первую главную компоненту.

Теорема 10 (Рао). Наилучшим выбором линейных функций, для которых остаточная дис-

персия, предсказания с помощью линейного предиктора, минимальна, является выбор пер-

вых k главных компонент случайной величины X.
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Для нахождения первой главной компоненты требуется найти такие линейные комбина-

ции ZT = WXT векторов-столбцов матрицы X, что векторы-столбцы z1, ..., zn матрицы Z об-

ладали бы наибольшей дисперсией: max
∑n

j=1Dzj при ограничениях нормировки WWT = I —

единичная матрица. Рао было показано, что строки матрицы W есть собственные векторы

ковариационной матрицы Σ = XTX. Значение интегрального индикатора y вычисляется

как проекция векторов-строк матрицы X на первую главную компоненту, y = Xw, где w —

вектор-столбец матрицы WT, соответствующий наибольшему собственному значению мат-

рицы Σ.

5.1.3. Метрический метод построения модели

При нахождении интегрального индикатора с помощью данной процедуры вычисляется

расстояние от вектора-столбца xi·, описывающего каждый объект, либо до наихудшего объ-

екта с показателями, принимающими значение xi = {0, 0, ..., 0}, yi = (
∑n

j=1 x̄
k
ij)

1

k ; либо до

наилучшего объекта с показателями, принимающими значение xi = {1, 1, ..., 1}, при соблю-

дении условия (158), yi = (
∑n

j=1(1− xij)
k)

1

k . При значении k = 1, 2 расстояния вычислены

соответственно в манхэттенской и евклидовой метрике. При k ≥ 3 полученное расстояние

называется расстоянием Минковского. В частности, для нахождения интегральных индика-

торов использовалась взвешенная сумма y = Xw0, где веса w0 назначались экспертами.

5.1.4. Расслоение Парето

Интегральный индикатор, полученный методом расслоения Парето [12,13] инвариантен к

любым преобразованиям исходных данных, сохраняющих порядок значений объектов внут-

ри данного показателя. Это дает возможность опустить предварительную обработку дан-

ных [14].

Имеем исходные данные, представленные матрицей X = {xij}m,ni,j=1, и xi,xξ ∈ Rn — век-

торы данной матрицы, описывающие i-й и ξ-й объекты. Вектор xξ = 〈xξj〉nj=1 называется

недоминируемым, если не найдется ни одного вектора xi, такого что

xij > xξj , i = 1, ..., m, j = 1, ..., n. (159)

Для некоторого вектора xξ ∈ W пространство W = Rn, в котором он находится, является

объединением двух областей W = W1 ∪ W2. Недоминируемые векторы xξ ∈ W1, осталь-

ные доминируемые векторы xi ∈ W2. При совпадении векторов xξ = xi считается, что оба

вектора находятся при соблюдении условия (159) в недоминируемой области xξ,xi ∈ W1.

Произвольный вектор xi сам себя не доминирует.

Введем отношение порядка на множестве объектов {xi}. Объект xi доминирует объект xk,

если все элементы вектора xi не меньше соответствующих элементов вектора xk,

xi � xk, если xij > xkj для j = 1, . . . , n.

Рассмотрим Парето-оптимальный фронт P1 — множество недоминируемых объектов: для

каждого объекта xk ∈ P1 нет объекта xi такого, что xi � xk. Считая множество P0 = ∅ Опре-

делим множество Ps следующим образом. Парето-оптимальный фронт Ps, соответствующий
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слою с номером 1, есть множество недоминируемых объектов из набора
{
{xi}mi=1 \ {∅ ∪ P1 ∪

. . .∪Ps−1}
}
. Множество Парето-оптимальных фронтов строится индуктивно до тех пор, пока

объединение всех фронтов не совпадет со множеством объектов.

Определим интегральный индикатор i-го объекта yi = S − s(i), где s — индекс Парето-

оптимального фронта Ps, которому принадлежит объект xi, и S — число всех полученных

фронтов.

Для выполнения процедуры расслоения Парето требуется найти все недоминируемые

векторы для каждого слоя. Определим исходные множества S и T как S = {xi}mi=1 и T = ∅.
Для ζ-го слоя множество

Sζ = {xξ : xξj > xij ,xξ = xi, ξ ∈ {1...n}}m,ni,j=1.

Все найденные векторы {xξ} ∈ Sζ находятся в одном слое. Добавляем множество Sζ в мно-

жество T . Исключаем множество векторов Sζ из дальнейшего рассмотрения и повторяем

процедуру для множества векторов S \ T до тех пор, пока в этом множестве не останется ни

одного вектора. В результате расслоения получаем множество T , состоящее из l слоев Sζ :

T =
l⋃

ζ=1

Sζ . (160)

Для получения интегрального индикатора поставим в соответствие каждому вектору xξ, ξ =

1, ..., m, индекс ζ множества Sζ, которому принадлежит вектор xξ. Полученное множество

Ξ = {ζξ}mξ=1 приведем к виду, удовлетворяющему начальным условиям y = {max(Ξ)− ζξ}mξ=1.

Очевидно, что данном случае y ∈ Zm.

Существенным недостатком расслоения Парето является то, что при большой размерно-

сти пространства показателей или при отрицательной корреляционной зависимости показа-

телей значение l становится равным единице. Этот недостаток может быть обойден, если в

качестве набора входных показателей взять только те показатели, вклад которых при на-

хождении первой главной компоненты матрицы X наиболее значителен.

Для множества базовых показателей объектов Ψ = {ψj}nj=1 найдем такое подмножество

Ψ∗ = {ψj1, ..., ψjl}, jk ∈ {1, ..., n}, k = 1, ..., l, для которого число ν∗ различных элементов

множества yp = {y1, ..., ym}, полученного посредством процедуры расслоения Парето, будет

наиболее близко к ν. Значение ν определяется экспертом на основании сведений о числе

ожидаемых кластеров, на которые разбивается множество объектов Υ, или на основании

результатов процедуры кластеризации.

Подмножество базовых показателей Ψ∗ строится следующим образом. Пусть ym — инте-

гральный индикатор, полученный методом главных компонент и пусть χj — вектор-столбец

матрицы X, соответствующий показателю ψj . Поставим в соответствие каждому показате-

лю ψj коэффициент корреляции rj = r(ym,χj) и получим множество r = 〈r1, ..., rj〉. Из

множества Ψ последовательно выберем подмножества Ψ(1),Ψ(2),Ψ(3), ..., которые состоят из

одного, двух, трех и т. д., элементов — показателей, имеющих наибольший коэффициент rj

корреляции с первой главной компонентой ym.

Для каждого такого подмножества Ψ(i) = найдем интегральный индикатор y
(i)
p методом

расслоения Парето. Искомым множеством Ψ∗ будем считать такое множество Ψ(i), которому
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соответствует расслоение Парето с числом слоев, иначе, числом ν∗ различных элементов

множества y∗
p, наиболее близким к заданному числу ν.

Вклад показателей {ψj1 , ..., ψjl} подмножества базовых показателей при нахождении пер-

вой главной компоненты вычисляется как отношение

ρ∗ =
r∗1 + ...+ r∗l
r1 + ...rn

,

где r∗1, ..., r
∗
l — множество коэффициентов корреляции между столбцами χj матрицы X, соот-

ветствующими построенному множеству Ψ∗, и первой главной компонентой ym; и r1, ..., rn —

множество коэффициентов корреляции между всеми столбцами χj матрицы X и первой

главной компонентой ym. Значение ρ∗ характеризует качество интегрального индикатора,

полученного процедурой расслоения Парето с использованием подмножества Ψ∗ базовых по-

казателей.

5.2. Криволинейные линейные методы согласования экспертных

оценок

5.2.1. Экспертно-статистический метод

В работе [1] предложен экспертно-статистический метод нахождения интегральных инди-

каторов «с учителем», использующий экспертные оценки качества объектов. Он заключается

в нахождении таких весов w, при которых достигался бы минимум функционала невязки экс-

пертных интегральных индикаторов y0 и вычисленных индикаторов: w = argmin
w

||y0−Xw||22.
Полученный индикатор yЭ-С = Xw.

Рассмотрим задачу, в которой эксперты способны выставить адекватные интегральные

индикаторы y0 и веса показателей w0. Тогда каждый объект можно оценить двумя путями:

непосредственно через экспертную оценку и через взвешенную сумму значений показателей

объекта, где веса определяются экспертными оценками показателей. В общем случае эти

оценки различны.

Пусть задан вектор y0 = 〈y01, ..., y0m〉T, y0 ∈ Rm экспертных оценок интегральных ин-

дикаторов m объектов и вектор w0 = 〈w01, ..., w0n〉T, w0 ∈ Rn экспертных оценок весов n

показателей. Задана матрица X.

Согласно принятой модели, по исходным экспертным оценкам весов показателей w0 мож-

но вычислить значения вектора интегрального индикатора y1 = Xw0, также, по исходным

экспертным оценкам значения вектора интегрального индикатора y0 можно вычислить веса

показателей w1 = X+y0, где X — линейный оператор, представляемый при помощи данной

матрицы, X+ — оператор, псевдообратный [41] оператору X. В общем случае вектор экс-

пертной оценки y0 объектов и вектор взвешенной суммы значений показателей объектов y1

различны: y0 6= y1, также w0 6= w1.

Согласованными значениями интегрального индикатора и весов показателей называют-

ся такие значения ŷ и ŵ, при которых выполняется условие

{

ŷ = Xŵ,

ŵ = X+ŷ.
(161)
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Требуется найти оператор согласования Φ, переводящий тройку (y0,w0,X) в согласованную

тройку (ŷ, ŵ,X).

5.2.2. Линейное согласование экспертных оценок

Предлагаемый подход имеет целью согласовать экспертные оценки и заключается в по-

иске компромиссного решения. Согласно этому подходу, экспертам предоставляется возмож-

ность разрешить противоречие между интегральными индикаторами объектов, весами по-

казателей и измеряемыми данными.

Введем следующую процедуру согласования. Пусть X — матрица линейного операто-

ра, отображающего пространство весов показателей W ∋ w0 в пространство интегральных

индикаторов объектов Q ∋ y0, X : W −→ Q, и пусть для X существует псевдообратный опе-

ратор X+, отображающий пространство интегральных индикаторов в пространство весов

показателей X+ : Q −→W . То есть, X+X = In, XX+ = Im, X+XX+ = X+, XX+X = X.

Сингулярное разложение [42] невырожденной матрицы X имеет вид X = UΛVT, где

Λ = diag(λ1, ..., λR) — диагональная матрица, R = min(m,n) и UTU = Im,VVT = In —

ортогональные матрицы. Матрица X+ = VΛ−1UT является для матрицы X псевдообратной.

Действительно, X+X = VΛ−1UTUΛVT = In, XX+ = UΛVTVΛ−1UT = Im.

Найдем отображение вектора w0 из пространства W в пространство Q: y1 = Xw0 и

отображение вектора y0 из пространства Q в пространство W : w1 = X+w0, см. рис. 56.

Мы получили два отрезка — [y1,y0] ⊂ Q и [w1,w0] ⊂ W . Их Евклидова длина ‖y0 − y1‖
и ‖w0 − w1‖ характеризует несогласованность экспертных оценок. Найдем согласованные

оценки на этих отрезках. Для этого введем параметры α и β.

Рис. 56. Уточненные векторы экспертных оценок весов и индикаторов при α-согласовании.

Теорема 11. Существуют такие α, β, при которых значения векторов wα,yβ

{wα : wα = (1− α)w0 + αw1} ∈ [w0,w1],

{yβ : yβ = βy0 + (1− β)y1} ∈ [y0,y1],
(162)

где α, β ∈ [0, 1], удовлетворяют требованиям согласования, то есть, Xwα = yβ, причем

α = 1− β.

Доказательство. Так как y1 = Xw0, w1 = X+y0, и линейный оператор X : [w0,w1] −→
[y0,y1], то равенство (1− α)Xw0 + αXw1 = (1− β)y0 + βy1 справедливо при α = 1− β.
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Перепишем выражение (162) с одним параметром:

yα = αy0 + (1− α)Xw0,

wα = (1− α)w0 + αX+y0.
(163)

Таким образом, согласованные экспертные оценки находятся с помощью выражения

wα = (1− α)w0 + αX+y0,

yα = αy0 + (1− α)Xw0,
(164)

где α : α ∈ [0, 1] — параметр доверия экспертным оценкам интегральных индикаторов объ-

ектов либо экспертным оценкам весов показателей. При значении α = 0 мы игнорируем

экспертные оценки объектов, учитывая оценки весов; при значении α = 1 мы игнорируем

экспертные оценки весов, учитывая оценки объектов.

Очевидно, что процедура α-согласования дает согласованный результат.

Теорема 12. Тройка (yα,wα,X), полученная процедурой α-согласования (164) удовлетво-

ряет требованиям согласования (161).

Доказательство. Подставив в равенство Xwα = yα выражения для yα и wα, получаем

αy0 + (1− α)Xw0 = X ((1− α)w0 + αX+y0) , или

αy0 + (1− α)Xw0 = (1− α)Xw0 + αXX+y0.

Так как XX+y0 = y0, то αy0 + (1− α)Xw0 = (1− α)Xw0 + αy0.

Таким образом, посредством параметра α становится возможно уточнять экспертные

оценки w0,y0, получая новые оценки wα,yα.

Оценим невязку при выбранном параметре α. Евклидово расстояние между исходными

векторами y0,w0 и полученными векторами yα,wα в пространстве интегральных индикато-

ров и в пространстве весов соответственно равны ε2 = ‖yα−y0‖2и δ2 = ‖wα−w0‖2. В качестве

критерия выбора параметра α возьмем условие минимального расстояния между начальны-

ми и согласованными экспертными оценками в обоих пространствах Q и W . Учитывая, что

размерности этих пространств соответственно равны m и n, нормируем квадраты расстояний

и находим такие согласованные значения векторов yα и wα, что они удовлетворяют условию

ε2

m− 1
=

δ2

n− 1
. (165)

На практике эксперты сами могут выбирать значение параметра α в зависимости от

предпочтений важности оценок объектов или оценок показателей. Полученные результаты

удобно предложить экспертам на обсуждение в следующем виде:






Начальные wT

0

Конечные wT

α

y0 yα X




 . (166)

При изменении параметра доверия экспертов α к экспертным оценкам объектов и показате-

лей или при изменении самих экспертных оценок вышеописанную процедуру можно повто-

рить и передать на обсуждение экспертов вновь полученные результаты.
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5.2.3. Квадратичное согласование экспертных оценок

Определим согласованное решение как решение удовлетворяющее условию (161), при ко-

тором расстояние от согласованных векторов yγ и wγ таких, что yγ = Xwγ до соответственно

векторов экспертных оценок y0 и w0 будет минимальным. Пусть

ε2 = ‖Xw− y0‖2,
δ2 = ‖w−w0‖2.

(167)

Решение задачи нахождения минимального расстояния от согласованных векторов до век-

торов экспертных оценок имеет вид

wγ = arg min
w∈W

(ε2 + γ2δ2), (168)

где весовой множитель γ2 ∈ (0,∞) — определяет степень компромисса между оценкой объ-

ектов и показателей. При малых значениях γ2 в большей степени учитывается экспертная

оценка объектов, а при больших значениях γ2 в большей степени учитывается экспертная

оценка показателей.

Рис. 57. Уточненные векторы экспертных оценок весов и индикаторов при γ-согласовании.

Выпуклый функционал (ε2 + γ2δ2) достигает единственного глобального минимума на

множестве wγ ∈ W в точке

wγ = (XTX+ γ2I)−1(XTy0 + γ2w0). (169)

Так же, как и предыдущем методе, параметр γ2 для получения согласованных векторов yγ =

Xwγ и wγ выбирается исходя из условия ε2

m−1
= δ2

n−1
или назначается экспертами.

Теорема 13. Функционал (ε2 + γ2δ2) достигает единственного глобального минимума на

множестве wγ ∈ W в точке

wγ = (XTX+ γ2I)−1(XTy0 + γ2w0). (170)

Доказательство. Функционал (ε2 + γ2δ2) есть строго выпуклая функция, поэтому точка

минимума выражения (168) существует и единственна. Найдем эту точку. Подставляя правые

части выражения (167) в выражение (168) получаем

wγ = arg min
w∈W

(
‖Xw− y0‖2 + γ2‖w−w0‖2

)
.
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Используем обозначение нормы вектора ‖x‖2 =
∑

i x
2
i через скалярное произведение (x,x).

Представим функционал (ε2 + γ2δ2) в виде

‖Xw− y0‖2 + γ2‖w−w0‖2 =
(Xw− y0,Xw− y0) + γ2(w −w0,w−w0) =

(XTXw− 2XTy0 + γ2w − 2γ2w0,w) + (y0,y0) + γ2(w0,w0).

Полученное выражение имеет минимум по w при значении ∇w = 0, где

∇w = 2(XTX+ γ2I)w− 2(XTy0 + γ2w0),

здесь I — единичная матрица, размерность которой равна размерности матрицы XTX.

Из предыдущего выражения находим вектор wγ ∈ Rn, который удовлетворяет условию (168):

wγ = (XTX+ γ2I)−1(XTy0 + γ2w0).

Теорема 14. Тройка (yγ,wγ,X), полученная процедурой γ2-согласования

wγ = (XTX+ γ2I)−1(XTy0 + γ2w0),

удовлетворяет требованиям согласования (161).

Доказательство. Так как yγ = Xwγ, то X(XTX+ γ2I)−1(XTy0 + γ2w0) = Xwγ.

Выбор параметра доверия к экспертным оценкам интегрального индикатора или к экс-

пертным оценкам весов показателей проиллюстрируем следующим образом. На рис. 58 по-

казано изменение векторов wα и yα для различных значений параметра α. По оси абсцисс

отложены номера компонент векторов, а по оси ординат отложены значения векторов. Зна-

чения параметра α на графиках сверху вниз соответственно равны {0, 0.36, 1}. Каждая гори-

зонтальная пара графиков показывает состояние согласованной пары векторов yα и wα при

данном значении α. По оси абсцисс отложены номера компонент векторов, по оси ординат

отложены значения данных компонент векторов.

При минимальном значении параметра α, близки исходная оценка индикатора y0 и согла-

сованная оценка yα, см. верхний правый график. При максимальном значении параметра α,

близки исходная оценка весов показателей w0 и согласованная оценка wα, см. нижний левый

график. При значении α = 0.36 расстояния обоих согласованных векторов до соответству-

ющих им исходных векторов становятся одинаковы: ε2

m
= δ2

n
. Изменение расстояний ε, δ при

выборе параметров α, γ2 показаны на рис. 59. Здесь по оси абсцисс отложены значения α, γ2,

а по оси ординат значения ε, δ. При увеличении α расстояние ε между векторами y0 и yα

увеличивается, а расстояние δ между векторами w0 и wα уменьшается.

Для оценки работ процедур согласования воспользуемся суммарным расстоянием от век-

торов экспертных оценок до согласованных векторов ε2

m
+ δ2

n
. Для процедуры α-согласования

оно равно 0.67, для процедуры γ2-согласования — 0.62. Расстояние, полученное с помощью
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Рис. 58. Изменение весов показателей и интегрального индикатора при различных

значениях параметра α.

Рис. 59. Зависимость расстояний между векторами от параметров α и γ2.
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процедуры γ2-согласования меньше, чем расстояние, полученное с помощью процедуры α-

согласования, так как во втором случае согласованные векторы yα,wα принадлежат соответ-

ственно отрезкам [y0,y1] и [w0,w1], а в первом случае согласованные векторы yγ ,wγ лежат

в окрестности соответственно векторов y0 и w0.

Существует множество способов получения интегральных индикаторов с использовани-

ем измеряемых данных. Но после выбора алгоритма и получения результатов встает во-

прос: как показать, что полученные индексы верны? Для ответа на этот вопрос аналитики

приглашают экспертов. Эксперты высказывают свое мнение и тогда встает другой вопрос:

как обосновать адекватность экспертных оценок? Предлагаемый метод позволяет оценить

непротиворечивость экспертных оценок и получить обоснованные интегральные индикато-

ры. Обе процедуры — α-согласования и γ2-согласования дают в численных экспериментах

близкие результаты. Поэтому первая процедура может быть рекомендована в том случае, ко-

гда параметр согласования назначают сами эксперты. В том случае, когда требуется найти

минимальное суммарное расстояние, предпочтательна процедура γ2-согласования.

5.2.4. Монотонное согласование экспертных оценок

Предлагается процедура, где с оценками y0,w0 разрешены любые монотонные преобра-

зования, т. е. введено отношение порядка на множестве элементов векторов w0 = {wj : w1 6

... 6 wn}nj=1 и y0 = {yi : y1 6 ... 6 ym}mi=1, которое задает соответственно конусы W ∈ Rn

и Q ∈ Rm. При нахождении согласованных оценок вводятся монотонные корректирующие

функции TQ : Q −→ Q и TW : W −→ W, приближающие начальные экспертные оценки при

сохранении отношения порядка.

Дана тройка (y0,w0,X). Найдем такие векторы yτ = TQ(y0) и yτ = TW(w0), что выпол-

няется условие минимума невязки

XTW(w0)− TQ(y0) = ∆. (171)

Для k = 0, ..., K укажем такие векторы

wk+1 = TW ,k(wk,X
+yk),

yk+1 = TQ,k(yk,Xwk),
(172)

которые доставляют минимум функционалу ‖∆k‖2 = ‖Xwk − yk‖2. Векторы yτ ,yτ , находим

в результате композиции TQ = TQ,1 ◦ ... ◦ TQ,K и TW = TW ,1 ◦ ... ◦ TW ,K .

Нахождение корректирующей функции T . Рассмотрим два множества x = {x1, ..., xm} и

t = {t1, ..., tm : t1 6 ... 6 tm}. Множество пар φ = {(t1, x1), ..., (tm, xm)} задают функцию φ,

и xi = φ(ti). Функция φ, вообще говоря, немонотонна. Найдем такую монотонную функцию

f : t −→ x, f ∈ Pm которая аппроксимирует φ,

f(t) = arg min
f∈Pm

m∑

i=1

(

f(ti)− φ(ti)
)2

,

где Pm — множество всех возрастающих полиномов степени p 6 m. Также найдем такую

функцию ϕ : t −→ x, ϕ ∈ Θ, которая интерполирует множество пар φ:

ϕ(t) = argmin
ϕ∈Θ

‖ϕ(t)− φ(t)‖,
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где Θ — множество полиномиальных сплайнов с m узлами степени r дефекта 1.

Для приближения функции ϕ функцией f воспользуемся методом касательных Ньютона-

Канторовича. Рассмотрим f(t), ϕ(t) на отрезке S = [a, b] ∋ t. Требуется найти гомеоморфизм

ϑ : S −→ S, ϑ(t) = t+ τ(t), такой, что

ϑ = argmin
τ∈S

‖f(t)− ϕ(ϑ(t))‖2,

при значении τ = O(t). Для нахождения τ представим ϕ(ϑ(t)) в виде ϕ(ϑ(t)) = ϕ(t) +

τ(t)ϕ′(t) +O(τ 2(t)).

Теорема 15. Решением задачи оптимизации

τǫ(t) = argmin
τ∈S

(

‖f(t)− ϕ(t)‖2 + ǫ2‖τ(t)‖2
)

является выражение

τǫ(t) =

(

f(t)− ϕ(t)
)

ϕ′(t)
(

ϕ(t)
)2

+ ǫ2
.

Зададим искомую функцию T : x −→ y следующим образом. Подставляя в найденную

функцию ϕ(ϑ(t)) значения ti из φ получаем скорректированные оценки yi = ϕ(ϑ(ti)), i =

1, ..., m. Параметр ǫ2, определяющий, насколько велика разность между значениями, которые

принимает функция ϕ в точках t и ϑ(t), подбирается таким образом, чтобы функция T (ϑ(t))

была монотонной.

5.2.5. Криволинейная регрессия для согласования экспертных оценок

Ниже предложен метод построения рангового интегрального индикатора на основе ран-

говой матрицы описаний, заданной экспертами. Предложен трехшаговый итеративный алго-

ритм оценки параметров и весов признаков. Рассмотрена задача выбора наиболее информа-

тивных признаков. Работа проиллюстрирована задачей определения статуса редких видов,

включенных в Красную книгу РФ.

Задана множество D = {(xi, yi)}, i ∈ I = {1, . . . , m} пар. Каждая пара состоит из

описания объекта xi (таксона) и соответствующей ему метки класса yi (категория статуса

таксона).

Описание объекта x = [χ1, . . . ,χj , . . . ,χn]
T, j ∈ J = {1, ..., n} — это набор экспертных

оценок признаков. Оценки объектов по признакам выставлены в ранговых шкалах. Каждый

признак χj имеет собственную ранговую шкалу Lj , состоящую из kj упорядоченных эле-

ментов Lj = {1 ≺ 2 ≺ · · · ≺ kj}. Значение класса y также принадлежит упорядоченному

множеству L0 = {1 ≺ 2 ≺ · · · ≺ k0}.
Рассмотрим постановку задачи многоклассовой классификации в ранговых шкалах,

включающую криволинейную модель f(w,xi) и соответствующую ей вектор-функцию

f(w,X) = [f(w,x1), . . . , f(w,xm)] с матрицей описаний X = [xT

1 , . . . ,x
T

i , . . . ,x
T

m]
T и зависисмой

переменной y = [y1, . . . , yi, . . . , ym]
T, где w = [w1, . . . , ws]

T — параметры модели. Эта модель

должна доставлять минимум заданной функции ошибки S(f(w,X),y).
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Криволинейная модель f(w,xi) имеет вид

f(w,xi) = ξ
(
b0, h(w,xi)

)
, (173)

h(w,xi) =
∑

j∈J
ujg(bj, xij). (174)

где вектор параметров w = [b0;b1; . . . ;bn;u] = [bT

0 ,b
T

1 , . . . ,b
T

n,u
T]T состоит из векторов bj —

параметров монотонной коррекции j-го признака χj и весовых коэффициентов призна-

ков u = [u1, . . . , uj, . . . , un]
T. Функция g монотонной коррекции задана следующим образом:

g(bj,χ) : χ 7→ bj =







1 7→ bj1,

2 7→ bj2,

. . .

kj 7→ bjkj .

При этом соблюдается условие монотонности параметров,

Ord(bj) : 0 < bj1 < bj2 < · · · < bjkj < 1 для j = 1, ..., n и (175)

Ord(b0) : b01 < b02 < · · · < b0k0 .

Функция ξ
(
b0, h(w,xi)

)
определяет для числа h(w,xi) ближайшую по модулю компонен-

ту вектора b0:

ξ
(
b0, h(w,xi)

)
= argmin

j∈J
|b0j − h(w,xi)|.

Введя обозначение для матрицы скорректированных экспертных оценок

G = [gij ] = [g(bj, xij)], i ∈ I, j ∈ J ,

перепишем (173) и (174) в виде модели интегрального индикатора

f(w,xi) = ξ(b0, [Gu]i). (176)

Назначим функцией ошибки модели сумму квадратов регрессионных остатков,

S(w) = ‖f(ŵ, X)− y‖22 + λ‖û‖22,

включающую регуляризующее слагаемое с фиксированным коэффициентом λ, где ŵ и û —

параметры, которые необходимо оценить.

Оценивание параметров модели. Оценивание параметров w модели f выполняется ите-

ративно. Перед началом итераций значения векторов b0,b1, . . . ,bn назначены таким обра-

зом, что функция g является тождественной, g = id. Оценивание параметров выполняется в

три этапа. Сначала при фиксированных значениях векторов b̂0, . . . , b̂n оцениваются весовые

коэффициенты

û = argmin
u∈Rn

S
(
[b̂0; . . . ; b̂n;u]

T
)
.
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Затем при фиксированных значениях коэффициентов û оцениваются параметры монотонной

коррекции

[b1; ...;bn] = argmin
Ord(b1),...,Ord(bn)

S
(
[b̂0; . . . ; b̂n;u]

T
)

с учетом требования монотонности (175) значений этих параметров. На последнем этапе

оценивается вектор b0

b0 = argmin
Ord(b0)

S
(
[b̂0; . . . ; b̂n;u]

T
)
.

Итерации выполняются до стабилизации функции ошибки S.

Рассмотрим эти три этапа более подробно. За начальное приближение примем столбцы

матрицы G

Ĝ = [g(b̂1,χ1), . . . , g(b̂n,χn)] = [χ1, . . . ,χn],

поскольку, как было сказано выше, g = id, и вектор ŷ = y. Таким образом, векторы

b̂0, b̂1, . . . , b̂n в начальном приближении в качестве элементов содержат элементы множеств

L0,L1, . . . ,Ln.

Шаг 1. Найдем û при фиксированных b̂0, . . . , b̂n:

û = argmin
u

‖ŷ − Ĝu‖+ λ‖u‖.

Решение на шаге 1 имеет вид:

û = (ĜT Ĝ+ λI)−1ĜT ŷ.

Шаг 2. При фиксированных b̂0, û оценим скорректированную матрицу описаний

G = [g(b1,χ1), . . . , g(bn,χn)] = [g1, . . . , gn].

Для каждого gj ∈ Rm будем вычислять вектор ĝj , являющийся монотонной коррекцией

исходного вектора gj :







[ĝ1, . . . , ĝn] = argmin ‖ξ(b0,Gû)− ŷ‖22,
из gij1 6 gij2 следует ĝij1 6 ĝij2 i ∈ I, j1, j2 ∈ J ,
gij ∈ [0, 1] i ∈ I, j ∈ J , согласно (175).

По векторам ĝ1, . . . , ĝn затем однозначно восстанавливаются векторы b̂1, . . . , b̂n как упоря-

доченные векторы, содержащие различные элементы ĝ1, . . . , ĝn. Для решения этой задачи

используется алгоритм градиентного спуска, описанный в [156].

Шаг 3. Наконец, при фиксированных b̂1, . . . , b̂n, û оценим вектор b0 и ŷ = g(b0,y):

b̂0 = arg min
Ord(b0)

‖ξ(b0, Ĝû)− g(b0,y)‖22.
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5.3. Согласование экспертных оценок в ранговых шкалах

В данной работе предполагается, что эксперты выставляют оценки качества объектов и

важности показателей в ранговых шкалах. Предлагаемый метод базируется на идеях метода

уточнения экспертных оценок, выставленных в линейных шкалах. Согласно этому методу,

интегральный индикатор объектов можно оценить двумя путями: непосредственно через экс-

пертную оценку y0 и через взвешенную сумму значений показателей объектов y1 = Xw0, где

веса являются экспертными оценками показателей. В общем случае оценки y0 и y1 различ-

ны. Требуется построить интегральный индикатор, основанный на измеряемых данных и не

противоречащий оценкам экспертов.

5.3.1. Постановка задачи

Согласованными значениями интегрального индикатора и весов показателей называются

такие векторы y и w, при которых выполняются условия

y = Xw,

w = X+y,
(177)

где X+ — линейное отображение, псевдообратное отображению X, такое, что XX+X = X,

X+XX+ = X+ и (XX+)T = XX+, (X+X)T = X+X. Задачей предлагаемого метода является

такое уточнение экспертных оценок, которое соответствовало бы условию (177).

Заданы экспертные оценки y0,w0, допускающие произвольные монотонные преобразова-

ния. Задана матрица описаний объектов X ∈ Rm×n, удовлетворяющая условию (158). Без

ограничения общности будем считать, что на наборах экспертных оценок введено отношение

порядка такое, что

y1 > y2 > ... > ym > 0 и w1 > w2 > ... > wn > 0. (178)

Для выполнения этого условия достаточно переставить элементы векторов y0, w0 и соответ-

ствующие им строки и столбцы матрицы X местами.

Условие (178) представимо в виде системы линейных неравенств (приведены только оцен-

ки интегральных индикаторов)











1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

0 0 0 · · · 0 1





















y1

y2

. . .

ym−1

ym











> 0.

Обозначим двухдиагональную матрицу J и перепишем (178) в виде

Jmy > 0 и Jnw > 0.

Число строк квадратной матрицы J равно числу неравенств в системе, а число элементов

каждой строки равно числу элементов вектора (y или w).
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Обозначим конусы, заданные экспертными оценками в пространстве интегральных инди-

каторов и в пространстве весов показателей, соотвественно Q и W:

Q = {y|Jmy > 0},
W = {w|Jnw > 0}. (179)

Нижний индекс 0, указывающий на то, что оценка поставлена экспертом, опущен, так как

векторы y,w рассматриваются как произвольные элементы множеств.

Рис. 60. Конусы в пространстве экспертных оценок показателей и интегральных

индикаторов.

Линейное отображение X переводит конус W ∋ w0 экспертных оценок показателей (179)

в вычисленный конус XW = P ∋ w1 (см. рис. 60):

X : W → P,
X : w0 7→ y1.

Рассмотрим следующие варианты:

1) конусы P и Q пересекаются, в этом случае экспертные оценки считаются согласованными

и найдется такая пара yp ∈ P ∪ Q,wp = X+yp ∈ W, которая удовлетворяет условию

согласованности (177);

2) пересечение конусов P и Q пусто, в этом случае требуется уточнение экспертных оценок.

Эти варианты рассмотрены разделах 4.3, 4.4.

5.3.2. Отображение и пересечение многогранных конусов

Для обоснования предложенного ниже алгоритма приведем некоторые свойства конусов.

Множество точек Q в Rm называется конусом, если для любой точки y ∈ Q точка λy также

принадлежит Q. Выпуклым многогранным конусом называется пересечение конечного числа

полупространств, граничные плоскости которых проходят через общую точку. Эта точка

называется вершиной конуса.

Выпуклый многогранный конус с вершиной в начале координат — это область решений

системы однородных неравенств:






x11w1 + x12w2 + . . . + x1nwn > 0,

x21w1 + x22w2 + . . . + x2nwn > 0,

. . . . . . . . . . . . . . .

xm1w1 + xm2w2 + . . . + xmnwn > 0.
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Согласно приведенному определению, система неравенств Jw > 0 задает многогранный ко-

нус.

Непосредственно из этого следует утверждение: пересечение многогранных конусов с вер-

шиной в начале координат является многогранным конусом. Действительно, рассмотрим два

многогранных конуса. Выпуклый многогранный конус с вершиной в начале координат — это

область решения некоторой системы однородных неравенств. Пусть первому конусу соответ-

ствует система неравенств X1w > 0, а второму — X1w > 0. Пересечение двух конусов —

область решений системы, составленной из неравенств обеих систем, соответствующих ко-

нусам. Другими словами, пересечение двух данных конусов задается системой однородных

неравенств с матрицей

X =

(

X1

X2

)

.

Утверждение: множество W всех векторов w = 〈w1, . . . , wn〉, удовлетворяющих условиям

w1 > w2 > . . . > wn > 0, является конусом. Действительно, если вектор w принадлежит

множеству W, то для любого λ > 0 справедливо неравенство λw1 > λw2 > . . . > λwn > 0,

поэтому вектор λw также принадлежит множеству векторов W.

Утверждение: геометрическое место точек, в которое отображение X : W → Q переводит

конус, является конусом. Действительно, для любого вектора w, принадлежащего конусу W,

вектор λw также ему принадлежит, а y = Xw. Поэтому, если вектор y принадлежит рассмат-

риваемому геометрическому месту точек, то и вектор λy = λXw = X(λw) ему принадлежит.

Таким образом, если W – многогранный конус, то отображение X переводит его в мно-

гогранный конус P = XW. Соответствующее псевдообратное отображение X+ переводит

конус W в конус X+W.

Утверждение: если конусы, задаваемые в пространстве интегральных индикаторов си-

стемами линейных неравенств B1y > 0 и B2y > 0, пересекаются, то их отображение

в пространстве весов показателей тоже пересекаются. Действительно, рассмотрим отобра-

жение XW → Q. Так как по условию теоремы конусы пересекаются, то найдется вектор y,

такой что (B1X)w > 0 и (B2X)w > 0, то есть, конусы в пространстве W тоже пересекаются.

В контексте рассматриваемой задачи, если в пространстве интегральных индикаторов

многогранные конусы, задаваемые неравенствами Jmy > 0 и XJnw > 0, пересекаются, то их

псевдообратные отображения в пространство весов показателей X+Jmy > 0 и Jnw > 0, тоже

пересекаются. Обозначим пересечения конусов в соответствующих пространствах как Wp =

W ∪X+Q и Qp = Q ∪XW.

Если конус Qp не пуст, то не пуст также и конус Wp. В противном случае оба конуса

пусты. Действительно, пусть конус Qp не пуст, значит, существует вектор yp такой, что

принадлежит конусам Q и XW одновременно. Покажем что конус Wp не пуст. Рассмотрим

векторы yp = Xwp ∈ Qp и wp = X+ypWp. Линейное отображение X+ переводит конус Q
в конус X+Q. Векторы y ∈ XW, вектор wp ∈ W (линейное отображение X : W → XW).

Таким образом, вектор wp принадлежит конусу Wp — пересечению конусов W и X+Q.

Пусть теперь конус Qp пуст. Покажем от противного, что конус Wp также пуст. Если

это не так, то существует вектор wp, одновременно принадлежащий конусам W и X+Q. Рас-

смотрим вектор yp = Xwp. Аналогичными рассуждениями приходим к выводу, что вектор yp
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принадлежит конусам Q и XW, то есть конусу Qp. То есть, конус Qp не пуст. Полученное

противоречие показывает, что конус Wp пуст.

Доказанное утверждение эквивалентно следующему: для каждого вектора wp, принадле-

жащего конусу Wp, найдется согласованный с ним вектор yp ∈ Qp, такой, что выполняются

условия (177).

Для отыскания пресечения конусов Qp опишем соответствующие множества система-

ми линейных неравенств. Представим конус Qp, элементы которого удовлетворяют усло-

вию (178) в виде двухдиагональной матрицы Q0, в которой элементы на главной диагона-

ли равны 1, а элементы на диагонали (1, 2), ..., (n − 1, n) равны −1. Представим отображе-

ние (XW) также в виде матрицы коэффициентов в пространстве Rm×m. Множество векто-

ров Qp ∋ yp является решением объединенной системы линейных неравенств
{

Qy > 0,

(XW)y > 0.
(180)

Полученное пересечение Qp также является конусом (возможно, тривиальным), каждый эле-

мент которого является интегральным индикатором, удовлетворяющим условию согласован-

ности (177).

5.3.3. Уточнение оценок в случае непересекающихся конусов

В случае пустого пересечения конусов Qp = Q ∩ XW и Wp = W ∩ X+Q предлага-

ется использовать модифицированный метод уточнения экспертных в линейных шкалах.

В пространстве интегральных индикаторов рассмотрим лучи, заданные векторами y ∈ Q
и p ∈ P = XW. Найдем ближайшие друг к другу лучи на ребрах или гранях конусов Q,P,

cos(y,p) =
yTp

‖y‖‖p‖ → max .

и выполним процедуру уточнения (56) на точках, задающих эти лучи. Отыскиваемая па-

ра y,p должна выполнять следующие условия:

maximize yTp

subject to yTy = 1, pTp = 1,

Jny > 0 XJmp > 0.

Построим итерационный алгоритм, последовательно находящий приближения векто-

ров y(2k),p(2k+1) на четном и нечетном шаге. Векторы x = y(2k) и y = p(2k+1) будем считать

решениями двух последовательно решаемых оптимизационных задач, полагая произвольным

вектор p(0) ∈ P на шаге k = 0.

Задача 2k : Задача 2k + 1 :

maximize xTp(2k) maximize yT (2k+1)y

subject to xTx = 1, subject to yTy = 1,

Jnx > 0. XJmy > 0.

При решении задач, на каждом шаге значение констант p(2k) и y(2k+1) принимается равным

значениям соответствующих решений x и y предыдущего шага. Так как максимизируемые
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функции и ограничения обеих задач являются выпуклыми, то решение будет найдено за счет-

ное число шагов. Методы выпуклой оптимизации, используемые для получения численных

решений, хорошо исследованы и описаны, например, в [156, 96].

Получив решения задачи — векторы p̂ и ŷ, выполняем процедуру линейного уточнения

оценок интегрального индикатора

yα = (1− α)p̂+ αŷ,

при условии существования нетривиального решения yα, то есть, p̂Tŷ 6= −1. Как было по-

казано ранее, вектор yα и соответствующий ему вектор wα = X+yα удовлетворяют условию

согласованности (177). Эти векторы задают в соответствующих пространствах конусы W
и Q, причем пересечение Wp = XW∩Q не пусто. Так же, как и в случае уточнения оценок у

линейных шкалах, при значении параметра α→ 0, предпочтение отдается экспертным оцен-

кам качества объектов. При α → 1 предпочтение отдается экспертным оценкам важности

показателей.

В следующем разделе показано, как по уточненным оценкам, выставленным в ранговых

шкалах, можно получить оценки в линейных шкалах.

5.4. Устойчивость и регуляризация при выборе моделей

экспертных оценок

5.4.1. Получение непротиворечивых экспертных оценок

Для проверки непротиворечивости выставленных экспертных оценок рекомендуется вы-

полнить процедуру парного сравнения. На множестве объектов или на множестве показате-

лей экспертом задается отношение частичного порядка ρ(yi, yj), такое, что

ρij =







+1, если yi ≻ yj ,

−1, если yi ≺ yj ,

0, в случае отказа от оценки.

Антисимметричная матрица R = {ρij}mi,j=1 задает направленный граф, в котором узлами

являются объекты. Направление ребер задано элементами матрицы. В случае обнаружения

петель в графе (например, петель вида yi ≻ yj ≻ yk ≻ yi) требуется пересмотреть экспертные

оценки с целью исключения петель. Экспертная оценка yi в ранговой шкале есть число ребер,

исходящей из i-й вершины графа.

Рис. 61. Пример графа, построенного по матрице парных сравнений.
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В качестве примера приведем сравнение четырех объектов: {Θ,Φ,Ω,Ψ}. Пусть матрица

парных экспертных предпочтений R задана как

Θ Φ Ω Ψ

Θ 0 +1 +1 +1

Φ −1 0 +1 +1

Ω −1 −1 0 −1

Ψ −1 −1 +1 0

.

Тогда граф, соответствующий этой матрице, будет выглядеть как на рис. 61, а вектор экс-

пертных оценок y0 = 〈y1, . . . , y4〉T = 〈3, 2, 0, 1〉T.

При попадании несравнимых объектов в один класс эквивалентности число неравенств в

линейной системе (180) сокращается: исключается строка с номером i, где i, i+ 1 — номера

линейно упорядоченных объектов, отнесенных экспертом в один класс. Процедура уточнения

экспертных оценок при этом остается неизменной.

5.4.2. Интегральные индикаторы, устойчивые к возмущению матрицы

описаний

Рассмотрим найденный конус Qp и матрицу «объект-показатель» X. Возмутим элементы

этой матрицы, X = X+∆, принимая гипотезу нормального распределения матрицы ∆ = δI,

δ ∼ N (0, σ2). Образ линейного отображения y = (X + ∆)w будет также иметь нормальное

распределение. Согласно принятой гипотезе, будем считать устойчивым к малому возмуще-

нию матрицы X такой интегральный индикатор yp, который наиболее удален от всех граней

конуса Qp при условии нормировки ‖yp‖ = 1. Вектор yp является центром сферы, вписанной

в конус Qp и называется точкой Чебшёва.

Расстояние от искомого вектора yp до граней b конуса отыскивается как решение опти-

мизационной задачи

y∗
p = arg max

yp∈Qp

{‖yp − b‖2, где b ∈ Rm \ Qp и ‖yp‖ 6 1}.

Рассмотрим систему из L линейных неравенств (180), решение которой задает конус Qp.

Обозначим sℓ — вектор нормали, соответствующий строке c номером ℓ этой системы. Ска-

лярное произведение xTsℓ = 0 задает плоскость в пространстве интегральных индикаторов,

проходящую через начало координат. Расстояние d от вектора yp до этой плоскости равно

d(yp, sℓ) =
yT

psℓ

‖sℓ‖
.

Эта задача является задачей выпуклой оптимизации и представима в виде

maximize inf
ℓ=1,...,L

(
xTsℓ‖sℓ‖−1)

subject to xTx = 1,

Jnx > 0,

XJmx > 0.
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Методы выпуклой оптимизации, используемые для численного решения данной задачи опи-

саны в [156, 178]. Результат решения — вектор x̂ = yp и вычисленный вектор весов показа-

телей wp = X+yp являются согласованными. Они получены с помощью экспертных оценок,

выставленных в ранговых шкалах и могут быть использованы для построения интегральных

индикаторов в линейных шкалах.

5.4.3. Регуляризация при согласовании экспертных оценок

При нахождении согласованных оценок требуется выбрать способ вычисления псевдо-

обратного оператора X+ : Q −→ W . Предлагается следующее решение. Задано множе-

ство Ω = {ω1, ..., ωk}, алгоритмов вычисления псевдообратного оператора X+. Из данного

множества выбирается такой алгоритм ω, что для полученного X+ = X+(ω) имеет место

minω∈Ω(
ε2

m−1
+ δ2

n−1
), где ε2 = ‖ŷ− y0‖2, и δ2 = ‖ŵ−w0‖2.

Для решения задачи предложены два способа нахождения псевдообратного оператора

X+: регуляризация псевдообратного оператора методом Тихонова и обращение усеченного

сингулярного разложения. В первом случае найден псевдообратный оператор X+ = (XTX+

γ2I)−1 со значением регуляризующего параметра γ2, см. выражение (170).

Алгоритм обращения матрицы посредством усеченного сингулярного разложения состо-

ит в следующем. Пусть матрица исходных данных X представлена в виде X = UΛVT. То-

гда при нахождении обратной матрицы X+ = VΛ−1UT в силу ортогональности матриц U

и V: UTU = VVT = I и в силу условия убывания диагональных элементов матрицы

Λ = diag(λ1, ..., λn) псевдообратная матрица X+ будет более зависеть от тех элементов матри-

цы Λ, которые имеют меньшие значения, чем от первых сингулярных чисел. Действительно,

если по условию теоремы о сингулярном разложении матрица X имеет сингулярные чис-

ла λ1 > λ2 > ... > λn, то сингулярные числа матрицы X+ равны Λ−1 = diag( 1
λ1
, ..., 1

λn
) и

1
λ1

6
1
λ2
... 6 1

λn
. Считая первые r сингулярных чисел определяющими собственное простран-

ство матрицы X, используем при обращении матрицы X первые r сингулярных чисел. Тогда

обратная матрица X+ будет найдена как X+ = VΛ−1
r UT.

Для обоснования предложенных методов согласования докажем следующие теоремы.

Лемма о непрерывности обратного отображения, впервые сформулированная А. Н. Тихо-

новым, приведена в обозначениях, принятых ранее в настоящей работе.

Лемма 1 (А. Н. Тихонова). Пусть метрическое пространство W отображается на мет-

рическое пространство Q и Q — образ множества W , W ⊂ W, при этом отображении.

Если отображение X : W −→ Q непрерывно, взаимнооднозначно и множество W ком-

пактно на W, то обратное отображение X+ : Q −→ W множества Q на множество W

также непрерывно по метрике пространства W.

Тройка (y,w,X) определена на следующих метрических пространствах. Вектор y явля-

ется элементом Q, где область Q является компактной в Q: Q ⊂ Q ≡ Rm, так как область Q

замкнута и ограничена. Также вектор w является элементом W , где область W являет-

ся компактной в W: W ⊂ W ≡ Rn, так как область W замкнута и ограничена. Метрика

задается нормами векторов ‖y‖2 для компакта Q и ‖w‖2 для компакта W . Функционал

ρQ = ρQ(Xw,y) определим как ρQ = ‖Xw− y‖2.
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Следствие 2. Псевдообратный оператор X+, определенный как X+ = (XTX+ γ2I)−1, явля-

ется непрерывным по метрике пространства W.

Теорема 16. Оператор X+ = UTΛrV, полученный методом обращения усеченного сингу-

лярного разложения, является непрерывным в r-мерном подпространстве.

Доказательство. Отметим, что оператор X является обратным для оператора X+ : Q −→
W. Оператор X+ определен в пространстве Rr, так как согласно теореме о сингулярном раз-

ложении матрицы U и V являются ортогональными, а матрица Λ является диагональной.

Матрица Λr получается из матрицы Λ путем замены части диагонали, начиная с элемента с

номером r + 1, нулевыми значениями. Прообраз X(G) всякого открытого в W множества G

открыт в Q в силу того, что X — линейный оператор. Также прообраз X(F ) всякого замкну-

того в W множества F замкнут в Q. Следовательно, оператор X+ непрерывен в r-мерном

подпространстве.

Так как оператор X в уравнении Xw = y вполне непрерывный, то построение устойчивого

к малым изменениям правой части y приближенного решения этого уравнения по формуле

y = X+w возможно в тех случаях, когда решение ищетcя на компакте W ⊂ W и правая

часть уравнения принадлежит множеству XW .

Покажем, что согласованные векторы ŷ, ŵ, получаемые с помощью процедур согласова-

ния, являются единственными.

Утверждение 1. Для данного параметра α ∈ (0, 1) и псевдообратного оператора X+, опре-

деленного как X+ = UΛrV
T, задача α-согласования (163) имеет единственное решение

(yα,wα,X).

Утверждение 2. Для данного параметра γ2 ∈ (0,∞) задача γ2-согласования (170) имеет

единственное решение (yγ,wγ,X).

Задача нахождения тройки (ŷ, ŵ,X) называется корректно поставленной на паре метри-

ческих пространств (Q,W), если удовлетворяются условия:

1) для всякого элемента ŷ ∈ Q существует решение ŷ ∈ Q;

2) решение определяется однозначно;

3) задача устойчива на пространствах Q,W.

Таким образом, мы получили решения задач (163) и (170), корректные по Адамару.

5.4.4. Устойчивые интегральные индикаторы с выбором опорного множества

описаний объектов

Нижеприведенный метод разделяет исходное множество описаний объектов на два под-

множества — опорное, и множество выбросов. При этом используется критерий вероятности

принадлежности описаний объекта одному из двух подмножеств. По опорному множеству, с

помощью метода главных компонент, вычисляются веса. Эти веса используются для полу-

чения интегральных индикаторов всей выборки.
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Для получения интегральных индикаторов, устойчивых к выбросам, в рамках линейной

модели ранее было предложено использовать регуляризацию. А.М. Шурыгин в работе [108]

рассмотрел два способа регуляризации ковариационной матрицы Σ. Первый способ — регу-

ляризация посредством ридж-регрессии, Σrβ = Σ+βI, где β — регуляризующий множитель.

Второй способ — диагональная регуляризация Σdν = (1 − ν)Σ + νdiag(Σ), где ν ∈ [0, 1] —

регуляризующий множитель. Было показано, что второй способ дает лучшую устойчивость

к выбросам.

Использование регуляризации приводит к потере информативности. Поставим задачу

так, чтобы сохранить значение критерия наибольшей информативности на опорном мно-

жестве описаний.

Задано множество описаний объектов, S0 = {x1, ...,xm}. Обозначим S = {S1, ..., Sl} —

множество всех подмножеств S0, в котором число элементов l = 2m. Алгоритм, вычисля-

ющий наиболее информативный линейный предиктор, использует множество Sξ, отыскива-

ет веса wξ = w(Sξ) ∈ Rn и возвращает интегральный индикатор yξ = Xwξ ∈ Rm. Обо-

значим S̄ξ дополнение Sξ до S0. Исключим из рассмотрения тривиальные пары (Sξ, S̄ξ), в

которых #Sξ = 1 и S̄ξ = ∅. Будем считать, что значения показателей объектов являют-

ся независимыми случайными величинами и принята гипотеза Гауссовского распределения

этих величин.

Пусть pξ = P (xi∈Sξ) обозначает вероятность принадлежности некоторого объекта из S0

множеству Sξ, и p̄ξ — вероятность того, что этот объект принадлежит дополнению до S0.

Найдем в S такое опорное множество Sξ, для которого отношение fξ = pξ/p̄ξ максимально.

Рассмотрим суммарные дисперсии σξ и σ̄ξ проекций pi элементов xi множеств Sξ и S̄ξ на

первые главные компоненты, определяемые матрицей Sξ. Обозначим nξ, n̄ξ, n0 — число эле-

ментов во множествах Sξ, S̄ξ, S0 соответственно. Суммарная дисперсия проекций pi элементов

множеств Sξ и S̄ξ всей выборки σ2(S0) равна сумме дисперсий каждой выборки, взвешенных

вероятностями принадлежности вектора xi с проекцией pi множествам Sξ, S̄ξ,

σ2(S0) = pξ
2σ2(Sξ) + pξ

2σ2(S̄ξ) =
pξ

2σξ
2

nξ
+
p̄2ξ σ̄

2
ξ

n̄ξ
. (181)

Для получения выражения отношения вероятностей fξ минимизируем дисперсию σ2(S0).

Так как выражение (181) должно удовлетворять равенству nξ + n̄ξ = n0, при дифференци-

ровании используем метод множителей Лагранжа, обозначив множитель λ. Тогда

L = σ2(S0) + λ(nξ + n̄ξ − n0) =
pξ

2σξ
2

nξ
+
p̄2ξ σ̄

2
ξ

n̄ξ
+ λ(nξ + n̄ξ − n0).

Приравняв частные производные по λ и по nξ к нулю, получаем

∂L

∂nξ
= −pξ

2σξ
2

nξ2
+ λ = 0,

∂L

∂λ
= nξ + n̄ξ − n0 = 0,

откуда получаем pξσξ = nξ
√
λ. Из двух последних выражений n0

√
λ = (pξσξ + p̄ξσ̄ξ) и pξ =

nξ(pξσξ + p̄ξσ̄ξ)(n0σξ)
−1. Продифференцировав лагранжиан L по n̄ξ, получим аналогичное

отношение для вероятности p̄ξ. Искомое отношение вероятностей равно

pξ
p̄ξ

=
nξσ̄ξ
n̄ξσξ

. (182)
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Таким образом, вероятность принадлежности описания объекта одному из множеств прямо

пропорциональна мощности этого множества и обратно пропорциональна среднеквадратич-

ному отклонению. Искомый интегральный индикатор yξ = Xwξ доставляется таким множе-

ством Sξ, для которого отношение fξ =
nξσ̄ξ
n̄ξσξ

максимально.

В качестве примера приведены результаты сравнительного анализа регионов России по

уровню загрязнения ртутью основных продуктов питания. Каждому региону поставлен в со-

ответствие интегральный индикатор, указывающий на загрязненность продуктов. Рассмат-

риваются три показателя загрязненности: мясные продукты, молочные продукты и хлебо-

булочные изделия. Используются данные 29 регионов. Данные нормированы следующим

образом. В каждом регионе для каждого из трех показателей был проведен ряд стандарти-

зованных измерений. Элемент xij матрицы описаний — величина загрязнения j-го продукта

в i-м регионе. Его значение есть отношение квантиля уровня 0.9 распределения содержания

ртути в серии измерений к величине предельно допустимой концентрации ртути в данном

продукте.

Найдем опорное множество Sξ с целью вычисления весов показателей wξ для получе-

ния интегральных индикаторов, устойчивых к выбросам. Алгоритм состоит из трех шагов:

назначения начального опорного множества, отыскания опорного множества и вычисления

интегрального индикатора.

1. Отыскивается центр исходного множества. Для этого находится вектор-среднее по всем

компонентам векторов xi, вошедших в выборку S0, и изымается вектор, наиболее удаленный

в евклидовой метрике. Это действие производится итеративно, до получения последнего век-

тора, который и является центром. Для сокращения времени работы алгоритма, две трети

описаний объектов, наименее удаленных от центра, заносятся в ядро опорного множества.

2. Исходное множества S0 разбивается на множества Sξ и S̄ξ таких, что Sξ вклю-

чает ядро опорного множества в качестве собственного подмножества, а S̄ξ являются

объектами-выбросами. Для каждого разбиения вычисляется целевая функция fξ =
nξσ̄ξ
n̄ξσξ

,

где nξ, n̄ξ — мощности множеств Sξ, S̄ξ; и σξ, σ̄ξ — суммарная дисперсия проекций объектов

множеств Sξ, S̄ξ на собственные векторы ковариационной матрицы, определяемой множества-

ми Sξ, S̄ξ. Из множества полученных функций fξ выбираем функцию, на которой достигается

максимум.

3. Объекты выбранного опорного множества Sξ задают матрицу “объект-показатель” Xξ.

Для нее вычисляется ковариационная матрица Σ = XT

ξXξ. Первый собственный вектор

матрицы Σ определяет веса wξ показателей исходного множества методом главных ком-

понент [256]. Интегральный индикатор объектов, вычисленный с помощью предложенного

алгоритма, есть yξ = Xwξ.

Множество исходных данных — описаний регионов — содержит три выброса по второму

показателю (молочные продукты) в трех регионах: республика Карелия, г.Санкт-Петербург,

Московская область. Данные Карелии, кроме того, содержат выброс по всем трем показате-

лям. Эти три региона не входят в опорное множество объектов.

В таблице 1 показано распределение весов показателей, полученных для трех алгоритмов

построения интегральных индикаторов. Первый алгоритм — применение метода главных

компонент к исходным данным без использования регуляризации. Второй алгоритм — метод
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Таблица 13. Веса показателей для алгоритма без регуляризации, с регуляризацией и с

опорным множеством.

w Без регуляризации С регуляризацией С опорным множеством

w1 0.0204 0.2264 0.4693

w2 0.9983 0.7687 0.7706

w3 0.0548 0.5982 0.4312

главных компонент с регуляризацией. Третий алгоритм — метод главных компонент для

опорного множества описаний объектов. При использовании первого алгоритма выбросы

по второму показателю приводят к неадекватному увеличению вклада этого показателя в

интегральный индикатор. Предложенный метод доставляет более адекватные значения весов

показателей, как показано в последнем столбце таблицы.

Для иллюстрации результатов работы алгоритмов введен критерий устойчивости

ϕ = argmin
Φ

‖wX −wX∗‖2,

где множество Φ определено как

Φ = {x∗| ‖x∗‖2 = max ‖xi‖2, i = 1, ..., m}.

Вектор wX получен с помощью метода главных компонент для исходной матрицы X. Век-

тор wX∗ вычисляется с помощью метода главных компонент для матрицы X c присоеди-

ненным вектором-столбцом x∗, который рассматривается как выброс. Значение критерия

устойчивости ϕ вычисляется для трех алгоритмов: без использования регуляризации, с

диагональной регуляризацией и с предложенным алгоритмом выбора опорного множества,

ϕ = 0.4727, ϕ = 0.0962 ϕ = 0.0, соответственно.
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Рис. 62. Расстояние между регуляризованным и устойчивым интегральным индикатором.

Алгоритм, использующий диагональную регуляризацию, позволяет получить адекват-

ный индикатор, но тем не менее влияние объектов-выбросов на индикатор полностью не
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исключено. На рисунке 1(a) показана зависимость евклидова расстояния ρ = ‖y2 − y3‖ от

регуляризующего параметра. Вектор y2 — индикатор, полученный с помощью диагональной

регуляризации, вектор y3 — индикатор, полученный с помощью алгоритма выбора опорного

множества описаний объектов. При значении ν = 0.9660 расстояние ρ достигает миниму-

ма. На рисунке 1(b) показана зависимость ранговой корреляции между индикаторами y2

и y3. Максимальное значение коэффициента ранговой корреляция, вычисленного по фор-

муле Кендалла, равно 0.94. Коэффициент ранговой корреляции вычисляется по формуле

Кендалла.

corr = 1− 6D2
(
m(m2 − 1)

)−1
,

где D — число перестановок между теми значениями пар интегральных индикаторов объ-

ектов, которые имеют различный порядок следования, m — число объектов. Коэффициент

ранговой корреляции используется для сравнения в связи с тем, что он инвариантен относи-

тельно монотонных преобразований интегральных индикаторов и учитывает только порядок

их значений, игнорируя при этом величину выбросов.

Таблица 14. Значения интегрального индикатора без регуляризации и построенного на

основе опорного множества.

Регион РФ y1 r(y1) y3 r(y3)

Архангельская область 0.5367 19 0.8356 23

Хабаровский край 0.7986 21 0.6165 19

· · · · · · · · · · · · · · ·
Владимирская область 0.0324 12 0.3577 14

Краснодарский край 0.0449 16 0.1578 10

Алгоритм, не использующий регуляризацию, вычисляет интегральный индикатор, кото-

рый существенно зависит от наличия в выборке объектов-выбросов. Коэффициент ранговой

корреляции между интегральным индикатором, полученным посредством такого алгорит-

ма, и между интегральным индикатором, полученным с помощью опорного множества, ра-

вен 0.82. Это означает, что у 37 пар, из всех возможных пар элементов двух индикаторов,

порядок следования объектов отличается. В таблице 2 приведены примеры таких пар. В

столбцах y1 и y3 приведены значения интегральных индикаторов указанных регионов. В

столбцах r(y1) и r(y3) приведены ранговые номера регионов.

5.4.5. Построение коллаборативного интегрального индикатора

Совместный интегральный индикатор вычисляется по спискам публикаций за послед-

ние годы, находящимся в открытом доступе, с использованием алгоритма коллаборативной

фильтрации. В качестве функционала качества используется функция близости интеграль-

ных индикаторов авторов и журналов, в которых они публикуют свои работы.

Построим интегральный индикатор качества научных публикаций. Рассматриваемый ин-

дикатор базируется на существующих методиках подсчета импакт-фактора (IF) [110] и ин-

декса Хирша [235] и предназначен для более точной оценки эффективности научной работы.
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В настоящее время понятие «качество журнала», помимо импакт-фактора, измеряется

при помощи рейтингов, составляемых государственными структурами. В частности, в Рос-

сии издания делятся на «журналы из списка ВАК» [245] и прочие. Эффективность научной

деятельности исследователя оценивается при помощи различных индексов [76], наиболее ча-

сто используемый из которых — индекс Хирша [235]. Упомянутые способы оценки качества

журналов и успешности научной работы базируются на подсчете числа цитирования публи-

каций и имеют ряд недостатков [102].

Предлагается связать качество публикаций автора с качеством журнала, в котором он

печатает свою работу и построить интегральный индикатор исходя из следующих принципов.

Каждому автору можно поставить в соответствие список журналов, в которых он публиковал

или хотел бы публиковать свои работы по некоторой тематике. Каждому журналу можно

поставить в соответствие список авторов, опубликованных в журнале. Поэтому

1) более высокое значение индикатора имеет тот автор, который публикует свои работы в

журналах с более высоким индикатором;

2) более высокое значение индикатора имеет тот журнал, в котором публикуют свои работы

авторы с более высоким индикатором.

Для построения модели используются списки публикаций за последние годы [105], нахо-

дящиеся в свободном доступе. Составляется матрица «журналы-авторы». Предполагается,

что эта матрица разрежена, то есть каждый автор публикуется в небольшом, по сравнению

с общим количеством, множестве журналов и каждый журнал печатает работы небольшой

группы авторов. Для определения значения индикатора проводится кластеризация авто-

ров и журналов с помощью алгоритма k-Means, построение ко-кластеров с использованием

алгоритма коллаборативной фильтрации [325]. Затем ненулевые элементы внутри каждо-

го ко-кластера концентрируются вблизи диагонали с помощью алгоритма редукции матриц

Cuthill-McKee [176, 297]. Также по размерам полученных ко-кластеров оценивается интегри-

рованность журналов и авторов в мировую науку. Чем больше размер кластера, тем большее

значение индикатора получают входящие в него журналы и авторы.

Дана матрица X = [xT

1 , . . . ,x
T

m]
T = [χ1, . . . ,χn] «журналы-авторы», заполненная нулями

и единицами X ∈ {0, 1}m×n. Строки xi матрицы соответствуют авторам, столбцы χj — жур-

налам. Единица на пересечении строки i ∈ I = {1, . . . , m} и столбца j ∈ J = {1, . . . , n}
означает, что i-й автор опубликовал работу в j-м журнале.

Требуется задать отношение линейного ϕ порядка на множестве авторов I:

ϕ : I → {0, 1}m×m

и отношение линейного порядка ψ на множестве журналов J :

ψ : J → {0, 1}n×n.

Для решения этой задачи предлагается посредством перестановки строк и столбцов матрицы

получить ленточную матрицу, в которой элементы были бы как можно ближе к диагонали.

Обозначим ϕ : I → Î и ψ : J → Ĵ искомые перестановки строк и столбцов матрицы X

соответственно.
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Введем функционал качества диагонализации матрицы:

Q(ϕ, ψ) =
∑

i∈I

∑

j∈J
xij |ϕ(i)− ψ(j)|, (183)

Искомый алгоритм (ϕ̂, ψ̂) ранжирования авторов и журналов определяется решением задачи

дискретной оптимизации

(ϕ̂, ψ̂) = argmin
ϕ,ψ

Q(ϕ, ψ). (184)

В предположении что автор, публикуют работы по некоторой определенной тематике,

предлагается выделить кластеры «журналы-авторы», а затем вычислить интегральный ин-

дикатор внутри каждого кластера. Размеры получаемых ко-кластеров интерпретируются

как «степень вовлеченности в мировое научное сообщество» входящих в него авторов и изда-

ний. Предлагаемый алгоритм построения совместного интегрального индикатора включает

четыре основных этапа. На первых трех (кластеризация авторов, кластеризация журналов,

ко-кластеризация) находятся совместные кластеры «журналы-авторы». На последнем этапе

(редукция ко-кластеров) путем оптимизации функционала качества (183) решается задача

ранжирования (184).

Кластеризация авторов проводится алгоритмом k-Means. Число кластеров K счита-

ем фиксированным. Задаем начальное приближение положений центров кластеров uq, q ∈
{1, . . . , K}. Затем для каждого элемента xi находим ближайший к нему центр uq и относим

его к кластеру с номером yi = q:

yi = argmin
q∈{1,...,K}

ρ(xi,uq).

Осуществляем пересчет положений центров, помещая их в центр масс соответствующих кла-

стеров:

uq =

∑

i∈I [yi = q]xi
∑

i∈I [yi = q]
,

где индикатрная функция [yi = q] принимает значение 1, если yi = q, и 0, если yi 6= q.

Алгоритм останавливается, когда кластеризация yi элементов xj стабилизируется.

Поскольку в рассматриваемой задаче число авторов значительно превышает число жур-

налов, то в качестве признаков для объектов-авторов используется наличие или отсутствие

публикаций в конкретных журналах. В работе используется метрика суммы модулей разно-

стей компонент векторов:

ρ(xi,xl) =
∑

j∈J
|xij − xlj |,

В качестве исходных положений центров кластеров uq, q ∈ {1, . . . , K} используются объекты

выборки (авторы) xi, публиковавшиеся в самых популярных журналах среди активно пуб-

ликующихся авторов, и авторы, опубликовавшие статьи в изданиях, популярных среди тех,

кто имеет статьи лишь в одном журнале. Популярностью P (A, j) журнала j для группы ав-

торов A будем считать число авторов из рассматриваемой группы, опубликовавших работы

в данном журнале:

P (A, j) =
∑

k∈A
[xkj = 1], A ⊆ I,
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где xkj — элемент входной матрицы X. Зададим пороги для искомых журналов:

P (Aact, j) ≥ αact, P (Aonce, j) ≥ αonce, (185)

где Aact и Aonce — группы авторов, активно публикующихся и напечатавших лишь од-

ну статью, соответственно. Таким образом, в число начальных центров кластеров uq, q ∈
{1, . . . , K} попадут те строки xi исходной матрицы X, соответствующие авторам, име-

ющим единственную статью i ∈ Aonce) в одном из популярных журналов среди ма-

ло публикующихся авторов xij = 1 ⇒ P (Aonce, j) ≥ αonce, и авторам, имеющим ста-

тьи во всех популярных журналах i ∈ Aact среди активно публикующихся авторов

xij = 1 для любого j, такого что P (Aact, j) ≥ αact:

Astart = {uq}Kq=1 =






xi : (i ∈ Aonce)
⋂(

xij = 1 ⇒ P (Aonce, j) ≥ αonce

)
, либо

xi : (i ∈ Aact)
⋂(

xij = 1 для любого j, такого что P (Aact, j) ≥ αact

)
.

(186)

Кластеризация журналов также проводится алгоритмом k-Means. В качестве призна-

ков для журналов используется их типичность для каждого полученного кластера авторов.

Типичность T (q, j) журнала j для кластера авторов с индексом q — это доля авторов из

данного кластера, опубликовавших статьи в данном журнале:

T (q, j) =

∑

i∈I [xij = 1][yi = q]
∑

i∈I [yi = q]
,

где xij — элемент входной матрицы X, yi — номер кластера, приписанный автору на преды-

дущем этапе алгоритма. Сформируем (K×n)-матрицу Y, в которой столбцы соответствуют

журналам, а строки — кластерам авторов.

Исходные положения центров кластеров vp, p ∈ {1, . . . , P} определяются с помощью раз-

деления журналов на три группы Bbig,Bav,Bsmall по величине их суммарной типичности

Tj =
K∑

q=1

T (q, j) (187)

по всем кластерам. Из каждой группы отбираются журналы, имеющие наибольшие значения

тех признаков, которые соответствуют наиболее типичным для данной группы журналов

кластерам. Типичность T (q,B) кластера авторов q для группы журналов B находится как

сумма типичностей соответсвующих журналов для данного кластера авторов:

T (q,B) =
∑

j∈B
T (q, j), B ⊆ J .

Для каждой группы журналов зададим пороги для определения наиболее типичных класте-

ров авторов:

T (q,Bbig) ≥ βbig, T (q,Bav) ≥ βav, T (q,Bsmall) ≥ βsmall. (188)
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В число начальных положений центров кластеров vp, p ∈ {1, . . . , P} попадут столбцы yj

матрицы Y, соответствующие журналам j ∈ Bk из каждой из трех групп Bbig,Bav,Bsmall, для

которых выполнено условие f(qk) > β:

Bstart = {vp}Pp=1 = {yj : (j ∈ Bk)
⋂

(f(qk) > β)}, (189)

где qj — множество кластеров авторов, удовлетворяющих условию Tq,Bk
≥ βk, k ∈

{big,av,small}. Функция f(qk) в выражении (189) определяется как

f(qk) > β ⇔







∏K
q=1 yqj > 0, k = “big” и j ∈ Bbig или k = av и j ∈ Bav;

∑K
q=1 yqj > β, k = “small” и j ∈ Bsmall.

Формирование ко-кластеров c ∈ {1, . . . , C} проходит путем отнесения кластера авторов q

к наиболее типичному для него кластеру журналов p:

c = q ∪ argmax
p

T (q, p), (190)

где T (q, p) — типичность кластера авторов с меткой q для кластера журналов с меткой p.

Кластер журналов с меткой p̃, оставшийся без авторов, присоединяется к тому кластеру p̂,

к которому отнесся наиболее типичный для него кластер авторов с меткой q̃:

q̃ = argmax
q

T (q, p̃);

p̂ = argmax
p

T (q̃, p), p̂ = p̂ ∪ p̃. (191)

Затем проводится повторное формирование кластеров по формуле (190).

Редукция ко-кластеров проводится с помощью модифицированного алгоритма Cuthill-

McKee. Введем матрицу Zc, которая является подматрицей входной матрицы X, содержа-

щей строки и столбцы (авторов и журналы), принадлежащие ко-кластеру с индексом c. Ал-

горитм работает с квадратной симметричной матрицей W, интерпретируемой как матрица

инцидентности соответствующего ей графа, которая строится в виде:

W =

(

0 ZT

c

Zc 0

)

, c ∈ {1, . . . , C},

где 0 — нулевая матрица необходимого размера. Алгоритм составляет перестановку R вер-

шин графа, обеспечивающую приведение матрицы к ленточной структуре. Последователь-

ность шагов:

1) выбрать вершину v графа, соответствующего матрице индидентности W , имеющую наи-

большую степень (количество ребер, смежных с этой вершиной) и поместить ее в R:

R = {v},

2) для каждого элемента u ∈ R найти все смежные вершины a, удалить из a вершины, уже

находящиеся в R, отсортировать a по убыванию степени вершин, присоединить a к R: R =

R ∪ a,
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(d) после редукции, увеличенный фрагмент

Рис. 63. Полученные ко-кластеры в задаче построения интегрального индикатора.

3) если A = ∅, то следующая вершина выбирается из необработанных по наибольшему зна-

чению степени.

После проведения перестановки строк и столбцов в полученной матрице оставляют строки,

соответствующие авторам и столбцы, соответствующие журналам.

Редукция ко-кластеров с целью построения интегрального индикатора. Модифициро-

ванным алгоритмом Cuthill-McKee проведена редукция каждого ко-кластера с целью скон-

центрировать все ненулевые элементы матриц вблизи диагонали. Результат представлен на

рис. 63. Представлена выборка, полученная из базы данных [105] и содержащая 134 966 ав-

торов и 178 журналов. Для удобства изображения матрицы транспонированы. Синие точки

соответсвуют ненулевым элементам исходной матрицы. Зелеными, фиолетовыми и красны-

ми точками обозначены ненулевые элементы подматриц, являющихся ко-кластерами. Ко-

кластеры отсортированы в порядке убывания числа ненулевых элементов, что соответствует

убыванию интегрированности авторов и журналов в мировую науку.
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5.5. Порядковая классификация объектов по частично

упорядоченным множествам

Решается задача ранжирования объектов [378, 285, 169] для определения статуса угро-

жаемых видов животных, входящих в список Красной книги IUCN. Приняты следующие

предположения о составе и свойствах признаков:

1) состав признаков считается исчерпывающим для получения адекватной модели;

2) на значениях признаков задано отношение полного порядка;

3) выполняется правило «the bigger the better», то есть большему (благоприятному) значе-

нию признака соответствует больший (благоприятный) статус вида;

4) допускаются различные экспертные оценки одного и того же вида;

5) каждый из признаков принимает на выборке все допустимые значения и только их.

Признаки, использованные для описания объектов, принимают значения из множеств, на

которых задано отношение порядка. Отношение частичного порядка является одним из ви-

дов бинарных отношений, свойства которых рассматриваются в [344]. Объекты, описанные

в ранговых шкалах, не являются точками в некотором линейном пространстве, они пред-

ставляют собой объекты нечисловой природы. Подходы к обработке нечисловой информа-

ции описаны, например, в [113]. В рассматриваемой прикладной задаче имеется экспертная

информация о важности признаков относительно друг друга, то есть над множеством при-

знаков тоже задано бинарное отношение предпочтения. Количество признаков сопоставимо

с количеством объектов, доступных для обучения алгоритма. Задачи с избыточным числом

признаков рассматриваются в работах [326, 321].

Задача монотонной классификации объектов нечисловой природы с учетом предпочтений

освещается в [181, 202, 228, 249, 248, 399]. Она решается методом попарных сравнений. Задача

монотонной классификации [285, 169] часто возникает в сфере информационного поиска. Для

их решения используют ранговую регрессию [174], модифицированный алгоритм SVM [401]

и модифицированный бустинг [199].

Прогнозирование состояния вида выполняется в два этапа: построение модели и клас-

сификация. Для построения модели используется алгоритм многоклассовой монотонной

Парето-классификации. Обоснование принципа Парето представлено работе [320]. Предпо-

лагается, что для более устойчивой работы алгоритма целесообразно минимизировать коли-

чество объектов, входящих в Парето-фронт. Подходы к сужению множества Парето описаны

в [320, 321]. В данной работе предлагается сузить множество Парето учитывая экспертное

предпочтение важности признаков [332] при определении отношения доминирования объек-

тов. Построенный алгоритм является альтернативой алгоритму решающего дерева, алгорит-

му обобщенной линейной регрессии и алгоритму на основе копул [272].

5.5.1. Матрица отношения порядка

Дано множество пар

D = {(xi, yi)}, i ∈ I = {1, . . . , m},
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состоящее из объектов xi и меток классов yi. Все объекты

x = [χ1, . . . , χj, . . . , χd]
⊤, j ∈ J = {1, . . . , d},

описаны в порядковой шкале. Это означает, что каждый признак χj принимает значение из

множества Lj = {l1, . . . lkj}, на элементах которого задано отношение линейного порядка,

χj ∈ Lj = {l1, . . . lkj}, где l1 ≺ · · · ≺ lkj .

Метки классов y принимают значения из множества Y = {l1, . . . , lY }, на элементах которого

также задано отношение порядка l1 ≺ . . . ≺ lY .

Требуется построить монотонную функцию

ϕ : x 7→ ŷ, (192)

определенную на всем множестве X = L1×· · ·×Ld и принимающую значения из множества Y.

Эта функция должна доставлять минимум функции ошибки

S(ϕ) =
∑

i∈I
r(yi, ŷi), (193)

где ŷi = ϕ(xi); а функция

r(·, ·) (194)

задает расстояние между метками упорядоченного множества и будет определена ниже.

Функция расстояния между элементами множества с линейным порядком. Опре-

делим функцию расстояния (194) между элементами упорядоченного множества. Для это-

го запишем отношение порядка между элементами некоторого упорядоченного множества

Z = {l1, . . . , lz}, l1 ≺ . . . ≺ lz, с помощью бинарной матрицы 15. Если в матрице на пересече-

нии строки i и столбца j стоит 1, то элементы множества li и lj связаны отношением порядка

li ≻ lj. Таким образом заданная матрица является нижнетреугольной с нулевой диагональю.

Таблица 15. Матрица отношения порядка.

Метки l1 l2 ... lz−1 lz

l1 0 0 ... 0 0

l2 1 0 ... 0 0

... ... ... ... ... ...

lz−1 1 1 ... 0 0

lz 1 1 ... 1 0

Поставим в соответствие элементу множества li ∈ Z i-тую бинарную строку stri из табл.

15. Тогда расстояние (194) между элементами li и lj будет задаваться расстоянием Хэмминга

между бинарными векторами

r(li, lj) = RHam(stri, strj), (195)

где RHam(stri, strj) — количество несовпадающих разрядов в строках stri и strj . Функция

расстояния (195) будет использоваться для определения расстояния между метками классов

из множества Y и метками значений признаков из множеств Lj , j = 1, . . . , d.
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5.5.2. Парето-классификация для случая двух классов

Рассмотрим частный случай поставленной задачи, где Y = {l1, l2} = {, 1}, 0 ≺ 1, то есть

выборка D содержит объекты только двух классов с метками 0 и 1. Искомую монотонную

функцию, минимизирующую (193), обозначим

f : x 7→ ŷ. (196)

Решим задачу нахождения функции f(x) с помощью разделимой выборки D̂ = {(xi, yi)},
i ∈ Î ⊆ I. Предполагается, что каждому из классов соответствует выпуклая оболочка POF,

заданная отношением доминирования «≻» объектов, и эти оболочки не пересекаются. Иско-

мая функция f будет сначала определена на множестве объектов разделимой выборки D̂, то

есть такой выборки, на которой функция f не будет допускать ошибок, а затем доопределена

на всем множестве X.

Отношение доминирования без учета важности признаков Введем на объектах

каждого из классов отношение доминирования. Разобьем множество индексов Î объектов

разделимой выборки D̂ на два подмножества Î = N ⊔P так, что yn = 0, n ∈ N , а yp = 1,

p ∈ P. Введем на множествах {xn : n ∈ N} и {xp : p ∈ P} отношения доминирования ≻n и

≻p. Объект xn = [xn1, . . . , xnd]
⊤ n-доминирует объект xi = [xi1, . . . , xid]

⊤, если значения всех

его признаков не менее предпочтительны, чем значения признаков xi:

xn ≻n xi, если xnj � xij для всех j = 1, . . . , d.

Объект xp = [xp1, . . . , xpd]
T p-доминирует объект xk = [xk1, . . . , xkd], если значения всех его

признаков не более предпочтительны, чем значения признаков xk:

xp ≻p xk, если xpj � xkj для всех j = 1, . . . , d.

Будем считать, что объект не доминирует сам себя ни в одном из смыслов:

x ⊁n x, x ⊁p x.

На рис. 64 приведен пример доминирования для случая двух признаков. По осям от-

ложены значения признаков: для первого признака из множества L1, для второго — из

множества L2, желтым цветом показаны область n-доминирования объекта xn и область

p-доминирования объекта xp. Объекты, попадающие в области, закрашенные желтым цве-

том, доминируются в соответствующем смысле рассмотренными объектами.

Отношение доминирования с учетом важности признаков Также введем на объек-

тах каждого из классов отношение доминирования с учетом важности признаков ≻ñ и ≻p̃.

Пусть признак χr с индексом r предпочтительнее (важнее), чем признак χr с индексом t:

r ≻ t, где r, t ∈ J .

Объект xn = [xn1, . . . , xnr, . . . , xnt, . . . , xnd]
T ñ-доминирует объект xi = [xi1, . . . , xid]

T (будем

обозначать xn ≻ñ xi), если выполнено одно из двух условий
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Рис. 64. Доминирование без учета важности признаков.

1) xn n-доминирует xi без учета важности признаков xn ≻n xi, или

2) xnr ≻ xnt и xtrn доминирует xi без учета важности признаков xtrn ≻n xi,

где xtrn = [xn1, . . . , xnt, . . . , xnr, . . . , xnd]
T, то есть соответствует объекту xn с переставлен-

ными значениями признаков r и t и доминируется этим объектом.

Объект xp = [xp1, . . . , xpr, . . . , xpt, . . . , xpd]
T p̃-доминирует объект xk = [xk1, . . . , xkd]

T (будем

обозначать xp ≻p̃ xk), если выполнено одно из двух условий

1) xp p-доминирует xk без учета важности признаков xp ≻p xk, или

2) xpr ≺ xpt и xtrp доминирует xk без учета важности признаков xtrp ≻p xk,

где xtrp = [xp1, . . . , xpt, . . . , xpr, . . . , xpd]
T, то есть соответствует объекту xp с переставлен-

ными значениями признаков r и t и доминируется этим объектом.

Будем считать, что объект не доминирует сам себя ни в одном из смыслов:

x ⊁ñ x, x ⊁p̃ x.

На рис. 65 приведен пример доминирования для случая двух признаков, первый из кото-

рых важнее второго. По осям отложены значения признаков, для первого признака из мно-

жества L1, для второго — из множества L2. Обозначены объекты xn и xp, зелеными точками

отмечены x21
n и x21

p . которые доминируются xn и xp и расширяют области их доминирования.

Возможные формы областей доминирования с учетом важности признаков приведены в

табл. 16. Расширенные области доминирования в форме «ступеньки» соответствуют объ-

ектам, у которых значение более важного признака более предпочтительно в случае ñ-

доминирования и менее предпочтительно в случае p̃-доминирования. Для всех остальных

объектов форма области доминирования не отличается от случая без учета важности при-

знаков и представляет собой прямоугольник.
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Рис. 65. Расширение областей доминирования при учете важности признаков.

Таблица 16. Формы областей доминирования при введении важности признаков.

Признак 1 важнее, чем признак 2 Признак 2 важнее, чем признак 1

xn1 ≻ xn2,

xp1 ≺ xp2
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5.5.3. Построение набора Парето-оптимальных фронтов

Определим Парето-оптимальные фронты — множества, которые будут задавать границы

классов разделимой выборки.
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Определение 17. Парето-оптимальный фронт POFn — множество объектов xn, n ∈ N ,

для каждого элемента которого xn ∈ POFn не существует ни одного объекта x, такого,

что x ≻n xn (x ≻ñ xn для отношения доминирования с учетом важности признаков).

Определение 18. Парето-оптимальный фронт POFp — множество объектов xp, p ∈ P,

для каждого элемента которого xp ∈ POFp не существует объекта x, такого, что x ≻p xp

(x ≻p̃ xp для отношения доминирования с учетом важности признаков).
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(b) С учетом важности признаков

Рис. 66. Парето-оптимальные фронты.

На рис. 66 показаны примеры Парето-оптимальных фронтов для двухклассовой разде-

лимой выборки, объекты которой описаны двумя признаками, принимающими значения из

множеств L1 и L2 соответственно. Зелеными треугольниками и синими квадратами обозна-

чены объекты разных классов. Объекты, вошедшие во фронты, обозначены красными круж-

ками. Граница класса, задаваемая n-фронтом, обозначена пунктирной линией, p-фронтом —

сплошной. Объединения областей доминирования объектов из фронтов закрашены желтым

цветом, чем темнее оттенок области, тем большее количество объектов ее доминирует. На

рис. 66(a) изображены Парето-оптимальные фронты, соответствующие отношению доми-

нирования без учета важности признаков. На рис. 66(b) изображены Парето-оптимальные

фронты, соответствующие отношению доминирования с учетом важности признаков (пер-

вый признак важнее второго). При введении в модель важности признаков количество объ-

ектов во фронте и форма объединения областей их доминирования может не измениться, как

для POFp в этом примере. Но в POFn для рассматриваемого примера количество объектов

уменьшилось, а объединение областей их доминирования, напротив, увеличилось, что объяс-

няется расширением областей доминирования при учете экспертной информации о важности

признаков.

Далее во всех рассуждениях и выкладках будут использоваться отношения доминирова-

ния с учетом важности признаков.
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5.5.4. Классификация для случая двух классов

Построенные Парето-оптимальные фронты и границы классов, им соответствующие, бу-

дут использованы для определения монотонного классификатора (196).

Функция f : x 7→ ŷ (197) ставит в соответствие произвольному объекту x ∈ X метку класса

«0», если найдется объект xn ∈ POFn, ñ-доминирующий x, и метку класса «1», если найдется

объект xp ∈ POFp, p̃-доминирующий x.

f(x) =







«0», если найдется xn ∈ POFn : xn ≻ñ x;

«1», если найдется xp ∈ POFp : xp ≻p̃ x.
(197)

Если таких элементов не найдется, то функция f доопределяется на множестве X согласно

правилу ближайшего множества POF:

f(x) = f

(

argmin
x′∈POFn∪POFp

(
ρ(x,x′)

)

)

,

где множества POFn,POFp включают Парето-оптимальные фронты и точки границы обла-

стей их доминирования и однозначно заданы построенными Парето-оптимальными фронта-

ми. Функция ρ задана с помощью функции (194), примененной к меткам значений признаков:

ρ(x,x′) =
d∑

j=1

r(xj , x
′
j). (198)

Таким образом, если не находится элементов из Парето-оптимальных фронтов, домини-

рующих объект x, то x относится к тому классу, к Парето-оптимальному фронту которого

он ближе.
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Рис. 67. Пример двухклассовой классификации методом Парето-оптимальных фронтов.
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Таблица 17. Пример двухклассового классификатора.

№ Объект x f(x)

1 (4,5) 0

2 (6,7) 1

3 (9,6) 1

На рис. 67 изображена синтетическая выборка, содержащая объекты двух классов. Объ-

екты первого класса обозначены зелеными треугольниками, второго — синими квадратами.

Объекты описаны двумя признаками, значения которых отложены по осям и принадлежат

множествам L1 и L2 соответственно. Классифицируемые объекты на графике отмечены чер-

ными кружками. Результат работы классификатора f для этих объектов приведен в табл.

17, содержащей три столбца. В первом столбце номера классифицируемых объектов, во вто-

ром столбце координаты этих объектов, в третьем — результаты работы классификатора.

Метка «0» во втором столбце означает, что объект отнесен к первому классу, который обо-

значен зелеными треугольниками, метка «1» — ко второму классу, изображенному синими

квадратами.

5.5.5. Приведение выборки к разделимой

Рассмотрим процедуру нахождения множества Î, на котором функция f : x 7→ ŷ монотон-

на. Разобьем множество индексов I объектов выборки D на два подмножества I = N ⊔P
так, что yn = «0», n ∈ N , а yp = «1», p ∈ P. Рассмотрим мощность µ доминируемого

объектом xi множества объектов другого класса:

µ(xi) =







#{xj | xi ≻n xj , j ∈ P}, если i ∈ N ,

#{xj | xi ≻p xj , j ∈ N}, если i ∈ P,

где знак # означает число элементов множества. Для нахождения множества Î проведем

процедуру последовательного удаления объектов из выборки D:

1) Î = I, P̂ = P, N̂ = N ,

2) пока в выборке D есть объекты xi с индексом i ∈ Î такие, что µ(xi) > 0 повторять пункты

3–6,

3) î = argmax
i∈Î=N̂ ⊔ P̂

µ(xi),

4) Î = Î\{̂i},

5) Если î ∈ P̂, то P̂ = P̂\{̂i},

6) Если î ∈ N̂ , то N̂ = N̂ \{̂i}.

На рис. 68 изображена синтетическая выборка, объекты которой описываются двумя при-

знаками. Выборка включает два класса, которые обозначены разными маркерами (зелеными
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Рис. 68. Иллюстрация исключения дефектных объектов из выборки.

треугольниками и синими квадратами). На рис. 68(a) изображена неразделимая выборка с

дефектными объектами (1;1), (5;4) и (8;6), доминирующими объекты чужого класса. Эти

объекты выделены красными окружностями. На рис. 68(b) показана разделимая выборка,

полученная после применения описанной выше процедуры.

5.5.6. Монотонная классификация

Построение монотонного классификатора. Рассмотрим общий случай задачи,

Y = {l1, . . . , lu, lu+1, . . . , lY }, l1 ≺ . . . ≺ lu ≺ lu+1 ≺ . . . ≺ lY .

Обозначим {1, . . . , u, u+1, . . . , Y } индексы меток классов. Для каждой смежной пары классов

u, u+ 1 построим монотонный двухклассовый классификатор

fu,u+1 : x 7→ ŷ ∈ {«0», «1»},

x ∈ X. Для построения каждого из классификаторов будем делить выборку на два клас-

са с метками «0» и «1», относя к классу «0» все объекты из классов с метками, не более

предпочтительными, чем lu, и к классу «1» — с метками, более предпочтительными, чем

lu. При этом множество индексов объектов Î разделимой выборки D̂ разбивается на два

непересекающихся подмножества

Î = Nu

⊔

Pu+1, где n ∈ Nu, если yn � lu, и p ∈ Pu+1, если yp � lu+1.

Монотонный классификатор

ϕ(x) = ϕ(f1,2, . . . , fY−1,Y )(x), ϕ : X → Y,

задан следующим образом:

ϕ(x) =







min
lu∈Y

{lu | fu,u+1(x) = «0»}, если {lu | fu,u+1(x) = «0»} 6= ∅;

lY , если {lu | fu,u+1(x) = «0»} = ∅.
(199)
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Таблица 18. Иллюстрация монотонного классификатора.

1, 2 ... u− 1, u u, u+ 1 ... Y − 1, Y

«1» ... «1» «0» ... «0»

В табл. 18 показана иллюстрация формулы 199. Результатом монотонной классификации

является метка класса, на котором двухклассовый классификатор впервые дает ответ «0»,

если все ответы двухклассовых классификаторов равны «1», то результатом многоклассовой

классификации будет метка последнего класса ly.
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Рис. 69. Парето-фронты, первый признак важнее второго.

На рис. 69 изображена синтетическая выборка, содержащая объекты трех классов. Значе-

ния двух признаков, которыми описываются объекты, отложены по осям графика, объекты,

принадлежащие разным классам, отмечены красными кружками, зелеными треугольниками

и синими квадратами. Показаны построенные с учетом важности признаков фронты. Гра-

ницы классов, соответствующие n-фронтам обозначены пунктирной линией, p-фронтам —

сплошной. Классифицируемые объекты отмечены черными кружками. Пример результата

работы набора функций f1,2, f2,3, входящих в классификатор ϕ, для выборки на рис. 69, вы-

глядит как табл. 19. Первый столбец таблицы содержит номера классифицируемых объектов,

второй — их координаты, третий и четвертый столбцы — результаты работы двухклассовых

классификаторов для смежных первого и второго, второго и третьего классов соответствен-

но на представленных объектах. Метка «0» во втором столбце означает, что объект был

отнесен к первому классу классификатором f1,2, метка «1» — ко второму классу этим же

классификатором. Метка «0» в третьем столбце означает, что объект был отнесен ко вто-

рому классу классификатором f2,3, метка «1» — к третьему классу классификатором f2,3.

Последний столбец содержит результаты монотонной классификации объектов. Значения в

этом столбце соответствуют номеру класса, к которому в итоге был отнесен объект.
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Таблица 19. Пример монотонного классификатора.

№ Объект x f12(x) f23(x) ϕ(x)

1 (1,1) «0» «0» «1»

2 (5,4) «1» «0» «2»

3 (9,9) «1» «1» «3»
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(a) Без доопределения
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(b) С доопределением

Рис. 70. Общий объект для двух n-фронтов.

Доопределение Парето-оптимальных фронтов при монотонной классификации.

При построении фронтов между классами с метками lu и lu+1 используются объекты клас-

сов с метками l1, . . . , lu для построения n-фронта для класса lu и объекты классов с метками

lu+1, . . . , lY для построения p-фронта для класса lu+1. Поэтому одни и те же объекты могут

попадать во фронты для разных классов, доопределяя их, и фронт одного класса может

содержать объекты нескольких классов. На рис. 70 приведен фрагмент синтетической вы-

борки, содержащей объекты трех классов. На графике изображены только объекты первого

(красные кружки) и второго (зеленые треугольники) классов, иллюстрирующие ситуацию,

когда объект с координатами (7;2) из первого класса попадает в n-фронты первого и второго

классов.

Таким образом, n-фронт доопределяется объектами, принадлежащими классам с мет-

ками, не превосходящими метку класса, для которого этот фронт строится; p-фронт до-

определяется аналогичным образом объектами классов с метками, превосходящими метку

класса,для которого строится фронт.

Допустимые классификаторы.
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Определение 19. Классификатор ϕ (199) будем называть допустимым, если для всех вхо-

дящих в него функций fu,u+1 соблюдается условие транзитивности:

{

если fu,u+1(x) = «0», то f(u+s)(u+1+s)(x) = «0» для всех s : (u+ 1 + s) 6 Y,

если fu,u+1(x) = «1», то f(u−s)(u+1−s)(x) = «1» для всех s : (u− s) > 1.
(200)

Определение 20. Парето-оптимальные фронты POFn(u) и POFp(u+ 1), u = 1, . . . , Y − 1

называются непересекающимися POFn(u) ∩ POFp(u+1) = ∅, если границы их областей

доминирования POFn(u) и POFp(u+ 1) не имеют общих точек.
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Рис. 71. Пример непересекающихся Парето-оптимальных фронтов.

На рис. 71 изображена синтетическая выборка объектов двух классов (зеленые треуголь-

ники и синие квадраты), описанных двумя признаками. Построены непересекающиеся фрон-

ты, с учетом важности признаков (первый признак важнее второго).

Теорема 17. Непересечения Парето-оптимальных фронтов

POFn(u) ∩ POFp(u+ 1) = ∅, u = 1, . . . , Y − 1 достаточно для выполнения отно-

шения транзитивности (200) для любого классифицируемого объекта.

Поскольку в работе для построения Парето-оптимальных фронтов используются разде-

лимые выборки, построенные фронты не пересекаются. Поэтому построенный монотонный

классификатор (199) допустим и для любого классифицируемого объекта выполняется усло-

вие транзитивности (200).
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6. Анализ прикладных задач

Поставленные в первой главе задачи регрессионного анализа и их решения играют важ-

ную роль в ряде прикладных областей. Принятый способ постановки задач, в терминах argmax,

позволяет разбить работы по решению прикладных задач на несколько независимых частей.

Постановка прикладной задачи как задачи регрессионного анализа включает следующие

шаги.

1. Строится регрессионная выборка, определяются общие цели моделирования.

2. Назначается функция ошибки и ограничения на регрессионную модель. Функция ошиб-

ки может быть назначена исходя из гипотезы порождения данных, либо исходя из при-

кладных соображений, например, из требований к минимизации риска, максимизации

прибыли, из стандартов физико-химических измерений и прочих.

3. Назначается класс регрессионных моделей, из которых будет выбрана модель опти-

мальной структурной или статистической сложности.

4. Задача выбора модели ставится как оптимизационная задача с ограничениями. Выби-

раются алгоритмы оптимизации для ее решения.

5. Исходя из гипотезы порождения данных или исходя из прикладных соображений вы-

полняется ряд тестов, которые оценивают качество и свойства выбранной модели.

В этом разделе приводится анализ постановки регрессионных задач с прикладной точки

зрения. Предложено несколько новых постановок авторегрессионных задач, включающих

выбор моделей и построение их смесей. При этом учитывается технология планирования

прикладных проектов, включающая текстовое описание проекта, предназначенное для фик-

сации целей, методов и результатов проекта. План проекта включает:

1) цель проекта, основная цель исследований, ожидаемые результаты,

2) обоснование проекта и область применения результатов проекта,

3) описание данных, включающее форматы и структуры данных,

4) описание критериев качества моделирования данных или целевых функций,

5) требования к проекту и условия успешного завершения проекта,

6) возможные риски и сложности, связанные с выполнением проекта,

7) краткое перечисление методов, предлагаемых для решения задачи.
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6.1. Анализ постановок прикладных задач с использованием

порождающих методов

Задано множество прецедентов — наборов результатов измерений

S = {s1, ..., sm}.

Элементом si множества S может являться, например, временной ряд некоторой длины, ви-

деоряд или анкета скорингового клиента. Задано множество меток классов, или переменных

отклика y = {y1, ..., ym}
Помимо множества S, задан словарь — множество V = V (S), представляющее собой

набор знаний о множестве прецедентов, необходимый для порождения моделей. Словарь

может быть получен в результате анализа структуры прецедентов.

Задано экспертное множество порождающих функций G = {g1, ..., gn}, где каждая функ-

ция gj отображает объект анализа si в элемент (i, j) матрицы плана X:

gj : (bj , si, V ) 7→ xij ∈ R1,

где bj — набор параметров порождающей функции gj.

Задана модель f и функция ошибки S(w|f ,X,y). Требуется решить задачу поиска опти-

мальных параметров ŵ и оптимального поднабора признаков A:

(ŵ, Â) = argmin

w ∈ Rn,

A ⊆ J = {1, ..., n}

S(wA|f ,XA,y).

6.1.1. Прогнозирование квазипериодических временных рядов

Рассмотрим постановку задачи авторегрессионного прогнозирования временного ряда,

как одну из наиболее показательных при создании многоуровневой прогностической модели,

в которой требуется одновременно выбрать объекты и признаки для каждой модели.

В качестве примера приведем прогноз цен и объемов потребления электроэнергии с ис-

пользованием набора временных рядов. Даны исторические ряды цен, регистрируемых каж-

дый час и объемов потребления электроэнергии. Дополнительные временные ряды продол-

жительность светового дня, температура воздуха, влажность, сила ветра, производственный

календарь. Требуется спрогнозировать потребление по часам на следующий день. На рис. 72

синей ломаной показан квазипериодический временной ряд, значения которого нужно спро-

гнозировать. Временной ряд имеет периоды: год, неделя, сутки, а также содержит апериоди-

ческие сегменты, например, праздничные дни. На рис. 73 показана годовая периодичность

временного ряда. Почасовые значения ряда, сгруппированные по дням, находятся строках

матрицы. Одна строка матрицы описывает один день недели. Всего показано 170 строк, что

примерно соответствует трем календарным годам.

Рассмотрим формальную постановку задачи. Дан временной ряд

s = {s1, . . . , sτ , . . . , sT−1}, s ∈ R.
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Рис. 72. Исходный временной ряд цен на электроэнергию, почасовые значения.

Рис. 73. Годичные периоды временного ряда, почасовые значения, сгруппированные по

неделям.
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Предполагается, что

(201)

1) отсчеты времени сделаны через равные промежутки; следовательно, значения времен-

ного ряда можно без ограничения общности проиндексировать натуральными числами,

которые будем считать тождественными отсчетам времени τ , сам ряд s будем считать

вектором,

2) ряд имеет единственную периодическую составляющую и период κ известен,

3) ряд не имеет пропущенных значений,

4) длина ряда кратна периоду, в противном случае из начала ряда следует удалить необхо-

димое число элементов.

Требуется

1) спрогнозировать следующее значение sT временного ряда в момент времени T ,

2) спрогнозировать значения sT , . . . , sT+κ−1 временного ряда на следующем перио-

де T, . . . , T + κ− 1.

Прогноз следующего значения временного ряда. Предлагается спрогнозировать сле-

дующее значение временного ряда с помощью линейной регрессии. Для этого построим ав-

торегрессионную матрицу X∗ следующим образом. Элемент матрицы в строке с номером i

и столбце с номером j тождественно равен элементу временного ряда с индексом

τ = (i− 1)κ+ j при mod
T

κ
= 0.

Эта матрица, в которой m строк и κ столбцов при длине ряда T = mκ, имеет вид

X∗ =








s1 . . . sκ−1 sκ

. . . . . . . . . . . .

s(m−2)κ+1 . . . s(m−1)κ−1 s(m−1)κ

sT−κ+1 . . . sT−1 sT







,

Строка с номером i содержит один период, а столбец с номером j — некоторую фазу пери-

ода. Другими словами, столбец матрицы содержит элементы ряда s с индексами, разность

которых кратна периоду κ. На рис. 74 показан пример авторегрессионной матрицы. Красный

цвет соответствует бо́льшим значениям временного ряда, синий — меньшим.

Представим X∗ в виде матрицы, состоящей из соединенных векторов

X∗ =








s1 . . . sκ−1 sκ

. . . . . . . . . . . .

s(m−2)κ+1 . . . s(m−1)κ−1 s(m−1)κ

sT−κ+1 . . . sT−1 sT







, (202)
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Рис. 74. Авторегрессионная матрица для временного ряда цен на электроэнергию.

или кратко,

X∗ =






X
(m−1)×n

y
(m−1)×1

xm
1×n

sT
1×1




 .

Здесь X — матрица плана с числом столбцов n = κ−1, а y — последний столбец матрицы X∗.

Принимая линейную модель зависимости y = Xw, после оценки наиболее вероятного вектора

параметров ŵ получаем прогнозируемое значение

sT = xT

mŵ.

Для случая нескольких рядов выполняется та же операция построения регрессионной

матрицы. Пусть даны ℓ рядов s1, . . . sℓ. Для каждого ряда строится матрица, и получает-

ся набор матриц X∗
1, . . .X

∗
ℓ . Матрицы соединяются, и от полученной матрицы отделяются

столбец значений зависимой переменной y и последняя строка xm.

При использовании набора порождающих функций G = {g1, . . . , gr}, например, g1 =
√
x,

g2 = arcsinh(x), g3 = x
√
x, g4 = id(x), матрица X∗ будет иметь вид

X∗ =








gr ◦ s1 . . . g1 ◦ s1 . . . gr ◦ sκ . . . g1 ◦ sκ
. . . . . . . . . . . . . . . . . . . . .

gr ◦ s(m−1)κ+1 . . . g1 ◦ s(m−1)κ+1 . . . gr ◦ s(m−1)κ . . . g1 ◦ s(m−1)κ

gr ◦ sT−κ+1 . . . g1 ◦ sT−κ+1 . . . gr ◦ sT . . . g1 ◦ sT







.

Два вышеприведенных варианта построения матрицы X∗ на практике приводят к тому,

что число столбцов матрицы может значительно превышать число ее строк. Пусть, например,

имеются значения потребления электроэнергии за три года по часам. Тогда матрица X∗ имеет

размер

156× 168, то есть 52 недели · 3 года × 24 часа · 7 дней;
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Рис. 75. Поточечный прогноз временного ряда на сутки вперед с использованием

предыстории на каждом шаге.

Для случая шести вышеперечисленных временных рядов матрица X∗ имеет размер 156 ×
1008. При использовании четырех упомянутых порождающих функций матрица X имеет

размер 156 × 4032. Таким образом, матрицу плана X можно считать плохо обусловленной,

а ее столбцы — мультикоррелирующими. Для прогноза требуется решить задачу выбора

столбцов матрицы плана X. Таким образом, даны

1) матрица плана X = [xT

1 , . . . ,x
T

i , . . . ,x
T

m−1], иначе X = [χ1, . . . ,χj, . . . ,χn]
T, J = {1, . . . , n},

2) вектор значений зависимой переменной y, который вместе с матрицей плана является

регрессионной выборкой D = (X,y),

3) класс моделей {fA = XAwA|A ⊆ J },

4) гипотеза порождения данных y ∼ N (f ,B) и функция ошибки S(wA|fA,D).

Требуется найти модель fÂ, другими словами, множество индексов Â столбцов матрицы

плана X, такое, что

Â = arg min
A⊆J

S(ŵA|fA,DT ). (203)

Оптимизационная задача решается на подвыборке DT ⊂ D либо на всей выборке DT ≡ D в

зависимости от вида функции ошибки S.

При постановке задачи считаем, что оценка ŵA параметра модели была получена ранее

согласно гипотезе порождения данных.

Следует отметить, однако, что качество прогноза на практике вычисляется с использо-

ванием средней абсолютной функции ошибки (англ. mean absolute percentage error)

MAPE =
1

m

m∑

i=1

∣
∣
∣
∣

fi − yi
yi

∣
∣
∣
∣
, (204)
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Рис. 76. Наборы параметров при прогнозировании периода временного ряда.

а не среднеквадратичной функции ошибки (англ. mean squared error)

MSE =
1

m

m∑

i=1

(fi − yi)
2.

Для разрешения задачи (204) с функцией ошибки MAPE используется метод наименьших

модулей [85, 24, 78]. Решается задача (203). Затем для оценки параметров, доставляющих

минимум функции ошибки (204), решается задача линейного программирования для случая

наименьших модулей. На рисунке 75 показан суточный прогноз, сделанный по последова-

тельным отсчетам с использованием предыстории на каждом шаге.

Прогноз следующего периода временного ряда. При прогнозе значений временно-

го ряда на несколько отсчетов вперед матрицу X∗, приведенную в (202) необходимо пе-

рестроить. Так как временной ряд имеет T значений, а прогнозируется значение с индек-

сом T + h, то возникают h неизвестных значений, h ∈ {0, . . . , κ}. При разбиении матрицы

в качестве вектора значений зависимой переменной используется столбец матрицы X с ин-

дексом j = (T + h)modκ. Так как T делится нацело на κ, то (T + h)modκ = hmodκ. На

рис. 76 цветом показаны значения параметров модели при последовательном прогнозирова-

нии. Столбцы графика соответствуют элементам вектора параметров при прогнозе одного

значения. На рис. 77 показан прогноз на неделю вперед.
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Рис. 77. Прогноз временного ряда на неделю вперед.

6.1.2. Векторная авторегрессия и сглаживание

Векторная авторегрессия [353], как метод краткосрочного прогнозирования набора вре-

менных рядов, была предложена в качестве альтернативы методу, использующему для по-

лучения прогноза систему одновременных линейных уравнений. Векторная авторегрессия

является одним из основных методов краткосрочного прогноза макроэкономических показа-

телей [289, 137, 207].

Заданы n временных рядов s1, . . . , sn. Как и ранее, sj = [x1j , . . . , x(T−1)j ], j = 1, . . . , n —

столбцы матрицы X. Рассмотрим матрицу X

X =






x11 . . . x1n
...

. . .
...

xm1 . . . xmn




 =






xT

1
...

xT

m




 , гдеm = T − 1.

Предполагается, что значение прогнозируемого вектора xT = [xT1, . . . , xTn]
T в момент време-

ни t = T линейно зависит от H предыдущих значений временных рядов,

ft =
H∑

τ=1

Wτxt−τ + µt,

где H называется также глубиной лагирования. Исключим из рассмотрения вектор-

слагаемое µt путем добавления временного ряда, состоящего из единиц. При этом число

строк матрицы W и число столбцов матрицы X увеличится на единицу. Сохраним для про-

стоты изложения ранее введенные обозначения размерности матриц и векторов.
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Пусть назначена функция ошибки S — евклидова норма вектора невязок при ретроспек-

тивном прогнозировании j-го временного ряда,

Sj =

t2∑

τ=t1

(fτj − xτj)
2.

Требуется найти матрицы параметров Wτ при τ = 1, . . . , H , которые бы доставляли минимум

функции ошибки на ретроспективном прогнозе в моменты времени t1, . . . , t2 для каждого из

временных рядов. Так как значения элементов fT1, . . . , fTn прогнозируемого вектора fT не

зависят друг от друга, а зависят только от предыдущих векторов xT−1, . . . ,xT−H , то зада-

ча распадается на ряд задач оценки векторов-строк матриц W . Так как принята линейная

модель, эту оценку можно получить методом наименьших квадратов. В случае нелинейной

модели векторной авторегрессии используется соответствующий алгоритм оценки парамет-

ров.

Представим модель прогнозирования в виде

ft =
H∑

τ=1

Wτxt−τ−1 = W1xt−1 + · · ·+WHxt−H−1.

Соединим строки с номером j матриц Wτ , τ = 1, . . . , H и обозначим полученный вектор ζj.

Этот вектор будет играть роль вектора параметров при прогнозировании одного элемента fTj

вектора fT . Соединим векторы xt−τ , τ = 1, . . . , H , транспонируем, и обозначим полученный

вектор κt. Тогда прогнозируемое значение равно скалярному произведению

fTj = ζT

jκT .

Задача нахождения векторов ζj , j = 1, . . . , n, из которых состоят матрицы Wτ имеет

следующий вид. Рассмотрим j-й локальный временной ряд [xt1j, . . . , xt2j ]
T = yj, состоящий

из отсчетов за интервал времени (t1, t2). Этот ряд приближается последовательностью

[ft1j , . . . , ft2j ]
T = [ζT

jκt1 , . . . , ζ
T

jκt2 ]
T = ϕj ,

Для решения задачи требуется минимизировать евклидову норму вектора

Sj = ‖yj −ϕj‖2 = ‖yj −






κT

t1

. . .

κT

t2




 ζj‖2.

Авторегрессия и скользящее среднее. Частным случаем вышеприведенной задачи яв-

ляется задача прогнозирования методом авторегрессии и скользящего среднего. Метод ши-

роко распространен и используется для прогнозирования временных рядов как в экспери-

ментальной физике [330], так и в экономике [310].

Задан временной ряд x = [x1, . . . , xt, . . . , xm]
T. Предположим, что этот временной ряд

содержит две аддитивные составляющие: периодическую составляющую и тренд. Первая

составляющая также называется авторегрессионной моделью и имеет вид

xt =

HAR∑

τ=1

ϕτxt−τ + c+ εt,
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где ϕ1, . . . , ϕHAR
— параметры модели, c — константа и εt — случайная переменная, реализа-

ция которой может быть использована второй моделью.

Вторая составляющая называется моделью скользящего среднего и имеет вид

xt =

HMA∑

τ=1

θτεt−τ + µ+ εt,

где θ1, . . . , θHMA
— параметры модели, µ —константа, и εt — случайная переменная.

Суммируя две модели, получаем

xt =

HAR∑

τ=1

ϕτxt−τ +
HMA∑

τ=1

θτεt−τ + c+ εt.

Предполагается, что регрессионные остатки — реализации случайной величины εt, распре-

делены нормально с матожиданием c,

[ε1, . . . , εm]
T = ε ∼ N (c1, σ2Im).

При такой гипотезе порождения данных функция ошибки, как и предыдущем параграфе,

будет иметь вид суммы квадратов регрессионных остатков:

S =

t2∑

t=t1

(ft − xt)
2 =

t2∑

t=t1

ε2t .

Функция вычисляется при ретроспективном прогнозировании на интервале времени (t1, t2).

Глубины лагирования двух моделей HAR, HMA называются структурными параметрами.

Так как вектор параметров [ϕ1, . . . , ϕHAR
, θ1 . . . θHMA

]T = w входит в модель линейно, то в

терминах задачи порождения и выбора моделей, модель авторегрессии и скользящего сред-

него будет иметь следующий вид. Построим строку xt с индексом t матрицы X с учетом

глубины лагирования:

xt = [xt, . . . , xt−HAR
, εt, . . . , εt−HMA

] = [xt, . . . , xt−HAR
, f̂t − xt, . . . , f̂t−HMA

− xt−HMA
].

Будем считать значения f̂t в предыдущем выражении фиксированными. Тогда прогнозиру-

емое значение вычисляется как скалярное произведение

ft+1 = wTxt,

а оценка вектора параметров ŵ является решением задачи

ŵ = arg min
ŵ∈W

‖[xt1 , . . . , xt2 ]T − [f̂t1 , . . . , f̂t2 ]
T‖2

ретроспективного прогноза на интервале времени (t1, t2). Так как прогнозируемые значения

временного ряда f̂ зависят, в свою очередь, от оценок параметров ŵ, f̂ = f(ŵ,x), то оценка

параметров выполняется итеративно.
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Рис. 78. Использование функции плотности при непараметрическом прогнозировании.

Параметрическое сглаживание временных рядов. Представим задачу о вычислении

скользящего среднего следующим образом. Пусть при решении задачи восстановления ре-

грессии E(y|x) значения зависимой переменной y определяются по регрессионной выбор-

ке D = {(xi, yi)|i = 1, . . . , m} не только вектором x, но и его окрестностью. В качестве

примера приведем две регрессионные модели: модель Парзена-Розенблатта [327, 340]

f(x) =
1

mh

m∑

i=1

K

(
xi − x

h

)

и модель Надрая-Ватсона[190, 97]

f(x, y) =

∑m
i=1 yiwi(x)∑m
i=1wi(x)

=

∑m
i=1 yiK

(
xi−x
h

)

∑m
i=1K

(
xi−x
h

) .

Ядро K соответствующее предполагаемой плотности распределения зависимой переменной y

при заданном x, является неотрицательной симметричной интегрируемой функцией, игра-

ющей роль взвешивающей функции: при удалении от точки xi ее значение уменьшается.

Функция ошибки при восстановлении регрессии имеет вид

S =
m∑

i=1

βi(x)(fi − yi)
2 → min,

где весовые коэффициенты βi определены значениями ядра K:

βi(x) = K

(
(xi − x)

h

)

,

.

Параметр h — ширина окна сглаживания, см. рис.78. В предположении о нормальном

распределении регрессионных остатков с дисперсией σ2, при гауссовом ядре

K =
1√
2π

exp

(

−1

2
(xi − x)2

)

оптимальная ширина окна сглаживания [97] равна

hopt = 1.059
σ

5
√
m
.
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6.1.3. Построение криволинейных моделей

Рассмотрим одну из наиболее распространенных задач — задачу выбора мономов по-

линомиальной регрессионной модели. Задана выборка D =
{
(ξi, yi)

}
, i = 1, . . . , m,

ξ = [ξ1, . . . , ξu, . . . , ξU ]
T ∈ RU . Задано множество G = {gv}, v = 1, . . . , V порож-

дающих функций, не содержащих параметры в качестве аргументов. Например G =

{ξ−1, ξ0,
√
ξ, id(ξ), ln(ξ), tanh(ξ)}. Как видно из примера, в множество порождающих функ-

ций входит как сама независимая переменная ξ = id(ξ), так и ее функции gv(ξ).

Для построения полиномиальных криволинейных моделей выполним следующие два ша-

га. Во-первых, построим декартово произведение G × ξ набора непорождаемых независи-

мых переменных ξ и порождающих функций G и обозначим aι — всевозможные суперпо-

зиции gv(ξu), поставленные в соответствие элементам этого декартова произведения. Во-

вторых, построим все произведения элементов aι степени, не превосходящей заданное чис-

ло P . Другими словами,

aι = gv(ξu), где индекс ι = (v − 1)U + u

и

xj =
∏

aι1 . . . aιp
︸ ︷︷ ︸

p раз

, где ι ∈ {1, . . . , UV }, p ∈ {1, . . . , P}.

Вышеприведенные шаги также можно представить в виде диаграммы

ξu
gv−→ gv(ξu) ≡ aι

∏p

−−→ xj .

Индекс j монома xj принадлежит множеству индексов J . Так как число сочетаний с

повторениями из UV по p элементов декартова произведения G× ξ равно

(
UV + p− 1

p

)

= (−1)p
(−UV

p

)

=
(UV + p− 1)!

p! (UV − 1)!
,

то количество элементов множества J ∋ j равно

|J | =
P∑

p=1

(UV + p− 1)!

p! (UV − 1)!
.

Полиномиальные криволинейные модели f являются линейными моделями относительно

своих параметров f = f(w,x),

fA(wA,x) =
∑

j∈A
wjxj , (205)

где A ⊆ J является набором индексов свободных переменных xj , wA — вектор параметров

c числом элементов |A|. Таким образом, задан класс регрессионных моделей F = {f} —

параметрических функций.

В обозначениях всевозможных суперпозиций aι = gv(ξu) модель (205) представима в виде

полинома Колмогорова-Габора

f(w,x) =
UV∑

ι=1

wιaι +
UV∑

ι=1

UV∑

κ=1

wικaιaκ +
UV∑

ι=1

UV∑

κ=1

UV∑

τ=1

wικτaιaκaτ + · · · .
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Например, пусть задана выборка — множество D = {ξ,y}

ξ =








ξ1

ξ2

. . .

ξm







,








y1

y2

. . .

ym







.

Задана регрессионная модель — квадратичный полином

f = w3ξ
2 + w2ξ

1 + w1ξ
0 =

3∑

j=1

wjξ
j−1.

Эта модель является линейной относительно параметров. Для нахождения оптимального

значения вектора параметров w = [w1, w2, w3]
T выполняется следующее переобозначение:

xi1 = ξ0i , xi2 = ξ1i , xi3 = ξ2i .

Тогда матрица X значений свободной переменной xij будет иметь вид

X =








x11 x12 x13

x21 x22 x23

· · · · · · · · ·
xm1 xm2 xm3







.

Параметры w находятся из решения задачи y = Xw + ε при ‖ε‖2 → min.

Восстановление форм геометрических фигур. Рассмотрим задачу восстановления

линейной регрессии в случае, когда регрессионная модель не присутствует явно в постановке

прикладной задачи. Для решения прикладной задачи необходимо ее переформулировать.

В качестве примера рассмотрим задачу контроля состояния трубопроводов. Пусть заданы

координаты точек окружности (сечения трубы) — множество точек {(x, y)}, измеренных с

некоторой погрешностью. Требуется найти центр (c1, c2) и радиус r окружности.

Запишем регрессионную модель — координаты окружности относительно центра и ради-

уса и выделим линейно входящие компоненты:

(x− c1)
2 + (y − c2)

2 = r2,

2xc1 + 2yc2 + (r2 − c21 − c22) = x2 + y2,

c3 = (r2 − c21 − c22).

Тогда матрица плана X, параметры w и зависимая переменная y линейной модели Xw =

y + ε будет иметь вид









2x1 2y1 1

2x2 2y2 1
...

...
...

2xm 2ym 1














c1

c2

c3




 =









x21 + y21
x22 + y22

...

x2m + y2m









+ ε.
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Параметры w = [c1, c2, c3]
T находятся, как и ранее, из решения задачи y = Xw + ε при

‖ε‖2 → min. Аналогичным путем ставятся задачи нахождения параметров эллипсоида, па-

раллелограмма и других геометрических фигур по измерениям координат точек, находя-

щихся на их границах.

Все три вышеприведенных примера в данном разделе иллюстрируют одну из наиболее

актуальных в современном регрессионном анализе задач — задачу нахождения такого мно-

жества индексов

Â = arg min
A⊆J

S(ŵ|DT , f),

которое бы имело оптимальную мощность. Оптимизационная задача решается на подвыборке

DT ⊂ D либо на всей выборке DT ≡ D в зависимости от вида функции ошибки S.

6.1.4. Порождение нелинейных моделей для оценки волатильности случайных

процессов

Задача оценки дисперсии стационарного случайного процесса в финансовой математи-

ке называется задачей оценки волатильности [75]. Она рассматривается вместе с задачей

прогнозирования волатильности при вычислении справедливой стоимости биржевых опцио-

нов [177]. Справедливая цена опциона (теоретически обоснованная минимальная цена, при

которой продавец может выполнить свои обязательства по договору) вычисляется с помощью

модели Блэка–Шоулза [247].

Эта модель включает оценку волатильности цены базового инструмента. Волатиль-

ность — это величина, равная стандартному отклонению стоимости базового инструмента,

вычисленная на основе текущей стоимости финансового инструмента, в предположении, что

рыночная стоимость финансового инструмента отражает ожидаемые риски. В предположе-

ниях, на которых основана модель Блэка–Шоулза, волатильность не зависит ни от цены

исполнения опциона, ни от времени до его исполнения. Однако на практике волатильность

зависит от этих двух величин, что и является основанием для поиска этой зависимости.

Заданы сетка цен исполнения опциона K = {Ks}, время до исполнения опциона, выра-

женное в годах T = {tτ}. В каждый момент времени tτ для цены исполнения Ks известна

историческая цена опциона Chist(K, t). Заданы безрисковая ставка B и цена базового ин-

струмента Pt в каждый момент времени. Известна предполагаемые значения волатильности

σimp = σimp(K, t), высчиленная по формуле Блэка-Шоулза как аргумент минимума разности

между исторической и справедливой ценой опциона:

σimp = arg min
σ∈R+

(
Chist − C(σ,K, t, P, B)

)
, (206)

где Chist — историческая цена опциона, C — справедливая цена опциона, вычисленная по фор-

муле Блэка–Шоулза, P — цена базового инструмента, B — банковская процентная ставка,

K — цена исполнения опциона, и t — время до исполнения опциона. Предлагается рассмат-

ривать задачу оценки волатильности как задачу восстановления регрессии в предположении

о нормальном распределении волатильности. При решении задачи E(y|x) = E(σ|[t,K]T) ис-

пользуются исторические временные ряды Chist
tK , Pt, набор цен исполнения {K} и константа B.
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По формуле (206) вычисляется предполагаемая волатильность σimp. Требуется найти модель

улыбки волатильности

σimp = σimp(K, t).

Рис. 79. Модель зависимости предполагаемой волатильности от цены и времени до

исполнения опциона.

Для этого подготовим регрессионную выборку. Индексы s и τ задают значения цены

исполнения и времени до исполнения опциона. Декартово произведение множеств индексов

{s}×{τ} задает множество пар (Ks, tτ ) и, соответственно, декартово произведения множеств

K × T . Присвоим каждому элементу этого произведения номер i ∈ {1, . . . , N} и представим

элементы произведения в виде векторов-столбцов вместе с соответствующими значениями

волатильности σ:

y =


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
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.

Регрессионная выборка D = {(xi, yi)} = {([ti, Ki]
T, σimp

i )}, i ∈ I = {1, . . . , m} строится

с помощью исходных данных — исторических цен опциона Cτκ и базового инструмента Pτ

следующим образом. Даны отсчеты времени t ∈ {tτ} = T , набор цен исполнения опционаK ∈
{Kκ} = K. Для каждого значения K ∈ K и t ∈ T вычисляется значение предполагаемой

волатильности как аргумент минимума (206)

στκ = arg min
σ∈R+

(
Chist
τκ − C(σ, Pτ , B,Kκ, tτ )

)
.

Для построения выборки двойной индекс переменной σimp заменяется на одинарный

σimp
τκ 7→ σi, i = τ + (κ− 1)|T |,

то есть вектор xi, поставлен в соответствие элементу декартова произведения:

xi = [tτ , Kκ]
T ∈ T ×K.



225

Требуется восстановить регрессию

σimp
i = f(w, [ti, Ki]

T) + εi, в принятых ранее обозначениях, yi = f(w,xi) + εi,

то есть выбрать модель из заданного семейства моделей f ∈ F и оценить ее параметры w,

исходя из предположения о нормальном распределении зависимой переменной y ∼ N (f, σ2I).

На рис. 79 показана одна из нелинейных моделей оценки и прогноза волатильности. По

оси абсцисс отложена цена исполнения опциона K (доллар США), по оси ординат отложе-

но время до исполнения t (доли года). Точками на рисунке показаны исходные данные. По

оси аппликат отложены подразумеваемая волатильность σimp и восстановленная волатиль-

ность f(w,x). Полученная модель является адекватной и удовлетворительно приближает

исторические данные.

6.1.5. Использование параметров модели в качестве независимых переменных

Рассмотрим задачу прогнозирования, в которой в качестве независимых переменных ис-

пользуются параметры вспомогательной модели. Требуется спрогнозировать концентрацию

кислорода в выпускном коллекторе двигателя внутреннего сгорания. Каждый элемент ре-

грессионной выборки соответствует одному рабочему циклу двигателя (измерения выполне-

ны на одном цилиндре) и включает температуру масла в двигателе, потребление топлива,

крутящий момент, мощность, угол поворота во время первого и второго впрыскивания топ-

лива, длительность замкнутого состояния контактов прерывателя, дымность, концентрацию

NOx, CO, CO2, HCprop в выхлопе и температуру выхлопа. Помимо этого измеряется давление

в камере сгорания; измерение производится 7200 раз в течение рабочего цикла (два полных

оборота коленчатого вала). Полагая, что коленчатый вал вращается равномерно, будем счи-

тать измерения давления временным рядом, который соответствует одному рабочему циклу.

На рис. 80 точками показано изменение давления (ось аппликат) в зависимости от номера

цикла (ось абсцисс) и от угла поворота (ось ординат).

Рис. 80. Зависимость давления в камере сгорания от угла поворота коленчатого вала и

номера рабочего цикла

Обозначим величины, измеряемые в течение i-го рабочего цикла однократно xi1, . . . , xi13,

а значения давления — si1, . . . , siτ , . . . , s7200. Соединяя два этих вектора, и обозначая про-

гнозируемую величину yi, концентрацию кислорода, получаем элемент (xi, yi) регрессионной

выборки D. Эксперимент состоит из измерений сотен циклов, поэтому необходимо сокращать

число признаков. Предлагается два подхода:

1) выбрать фиксированное число отсчетов временного ряда, которые снижают значение

функции ошибки при ретроспективном прогнозе,

2) приблизить временной ряд вспомогательной моделью — параметрическим семейством

функций и использовать параметры, оцененные в i-м временном ряде в качестве значений

признаков.
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Рис. 81. Зависимость давления в камере сгорания от угла поворота коленчатого вала.

Опуская ранее обсуждавшийся первый подход, рассмотрим задачу приближения набора

временных рядов. Без ограничения общности будем считать индекс τ значения siτ временного

ряда si независимой переменной. Тогда задача восстановления регрессии будет иметь вид

si = φ(u, τ ) + εi,

где u — вектор параметров. Считая вектор εi нормально распределенным, εi ∼ N (φ̂, σ2I),

используем для оценки вектора параметров ûi функцию ошибки

ûi = arg min
u∈W

Si(u), Si(u) = ‖φ(u, τ )− si‖2.

Так как эксперимент содержит серию временных рядов si, i = 1, . . . , m поставим задачу

выбора оптимальной модели φ ∈ F так, чтобы функции регрессии, соответствующие этой

модели, доставляли минимум среднему значению функции ошибки

φ̂ = argmin
φ∈F

S∗(φ), S∗(φ) =
1

m

m∑

i=1

Si(ûi) =
1

m

m∑

i=1

‖φ(ûi, τ )− si‖2.

Семейство регрессионных моделей F при этом может быть задано экспертно как множество

существенно нелинейных моделей ограниченной структурной сложности.

После выбора оптимальной модели φ и нахождения оценок ее параметров ûi на каждом

временном ряде si регрессионная выборка имеет вид

D = {([xi, ûi]T, yi)}, i = 1, . . . , m.

Эта регрессионная выборка используется при решении основной задачи прогнозирования

концентрации кислорода и выбора модели

yi = f(w, [xi, ûi]
T) + ǫi.

На рис. 81 показана зависимость давления в камере сгорания от угла поворота коленча-

того вала. По оси абсцисс отложен угол в градусах, а по оси ординат — давление в МПа.

Нулевому углу соответствует верхняя мертвая точка. Начало временного ряда соответствует

углу в −360 градусов, конец — углу в +359.9 градусов. Всего один полный цикл насчиты-

вает 7200 отсчетов. Лабораторный эксперимент включает измерения давления 122 полных
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циклов. Cплошной кривой показаны исходные данные, пунктиром показаны значения моде-

ли № 2. По оси абсцисс отложено значение свободной переменной, по оси ординат — значение

зависимой переменной. Временной ряд, приближенный данной кривой, содержит четыре ты-

сячи отсчетов. Для верификации полученных моделей использовалось 118 временных рядов.

Экспертами задано множество порождающих функций G из которых порождаются ре-

грессионные модели. Список функций приведен в таблице 20.

Выбор моделей произведен из более чем тысячи порожденных моделей. В таблице 21

приведены три модели, которые доставили наименьшие ошибки S при заданной структур-

ной сложности. Дополнительно качество моделей оценивалось по ошибкам ρ1, ρ2 и числу

элементов вектора параметров w. Ошибка ρ1 — среднеквадратичная относительная ошибка

ρ1 =

√
√
√
√

1

n

n∑

i=1

(
yi − f(xi)

max(yi)

)2

,

ошибка ρ2 — максимальная относительная ошибка

ρ2 = max
i=1,...,n

|yi − f(xi)|
max(yi)

.

В строке «Описание» таблицы 21 показана структура модели в виде дерева. В качестве

примера рассмотрим модель №2. Эта модель состоит из суперпозиции восьми функций f2 =

g1(g2(g3(g4(g5(x), g6(x)), g7(x)), x), g8(x)). Функции g1 = ÷(∅, ·, ·) и g2, g3, g4 = +(∅, ·, ·), сложе-

ния и умножения, имеют первым аргументом пустой вектор параметров; g5, g6, g7 = h(bi, ·),
i = 1, 2, 3, и g8 = l(b4, ·). Функции

h =
λi√
2πσi

exp

(

−(x− ξi)
2

2σ2
i

)

+ ai

имеют векторы параметров bi = [λi, σi, ξi, ai]
T, и функция l = (ax+ b) имеет вектор парамет-

ров b4 = [a, b]T.

Таблица 20. Множество порождающих функций.

№ Функция Описание Параметры

Функции двух зависимых переменных, g(b, x1, x2)

1 plus y = x1 + x2 –

2 times y = x1x2 –

3 divide y = x1/x2 –

Функции одной зависимой переменой, g(b, x1)

4 multiply y = ax a

5 add y = x+ a a

6 gaussian y = λ√
2πσ

exp
(

− (x−ξ)2
2σ2

)

+ a λ, σ, ξ, a

7 linear y = ax+ b a, b

8 parabolic y = ax2 + bx+ c a, b, c

9 cubic y = ax3 + bx2 + cx+ d a, b, c, d

10 logsig y = λ

1+exp
(
−σ(x−ξ)

) + a λ, σ, ξ, a
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Таблица 21. Вспомогательные модели, приближающие временной ряд.

№ модели 1 2 3

Ошибка ρ1 0.0034 0.0037 0.0035

Ошибка ρ2 0.0421 0.0325 0.00338

Число парамет-

ров

16 14 16

Описание

x
h

x
h
x
h

+
x
h

+
+

x
h
x
h

+
x
h

+ x
+

x
l
÷

×

x
h x
c

÷
x
h

+ x
×

x
h

+

Легенда: h — gaussian, c — cubic, l — linear,

+ — plus, × — times,÷ — divide

Модель f2 можно переписать в виде

f(w,x) =

(

x+
3∑

i=1

h(bi, x)

)

÷ l(b4, x),

где x = x, и w = b1
...b2

...b3
...b4. Развернутый вид модели:

y = (ax+ b)−1

(

x+

3∑

i=1

(
λi√
2πσi

exp

(

−(x− ξi)
2

2σ2
i

)

+ ai

))

.

6.2. Разметка временных рядов в задачах прогнозирования

Процедура разметки временных рядов разбивает ось времени на сегменты так, что что

временной ряд приближается внутри одного сегмента некоторой регрессионной моделью из

конечного набора. Нахождение разметки является одной из задач регрессионного анализа.

Для решения, например, часть временного рядя, находящегося внутри сегмента прибли-

жается отрезком, а весь временной ряд — ломаной. Более сложные способы приближения

рассмотрены в разделе «Многомерные адаптивные регрессионные сплайны».

6.2.1. Локальное прогнозирование и аппроксимация временных рядов

Метод локального прогнозирования используется для прогнозирования апериодических

временных рядов, содержащих повторяющийся сегмент [329, 84, 22, 260, 95]. Задан временной

ряд, в котором можно выделить некоторое число временных интервалов таких, что «поведе-

ние» ряда на этих интервалах можно охарактеризовать как закономерное. При прогнозиро-

вании предлагается выбрать интервалы с «похожей» предысторией, а окончание прогнозиру-

емого интервала вычислить как среднее продолжений найденных интервалов. Такое прогно-

зирование позволяет избежать использования вспомогательных регрессионных моделей для

локальной аппроксимации, описанных в предыдущем разделе. Поэтому этим методом мож-

но прогнозировать временные ряды достаточно сложной формы при единственном условии:
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прогнозируемый сигнал должен достаточно регулярно повторяться. В качестве примера при-

ведем прикладные задачи прогнозирования пульсовой волны, энцефалограммы, электрокар-

диограммы [307, 213, 308, 350, 170], личной подписи [317] и физической активности человека,

см. рис. 82.
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Рис. 82. Сверху: размеченные временные ряды; вертикальными линиями обозначены

границы сегментов. Снизу: результаты сегментирования; красным выделены начало/конец

сегмента.

6.2.2. Нахождение локального прогноза

Рассмотрим временной ряд s = [s1, . . . , sT ]
T и его всевозможные локальные сегменты xi =

[si, . . . , si+n−1]
T длинной n начинающиеся с элемента с номером i. Всего таких сегментов m =

T − n + 1. Представим полученные сегменты в виде матрицы X = [xT

1 , . . . ,x
T

m]
T. Для того,

чтобы вычислить расстояние между сегментами, введем функцию расстояния ρ(xi,xk). В

качестве примера такой функции приведем взвешенную евклидову метрику

ρ(xi,xk) = (xi − xk)
Tdiag(λ1, . . . , λn)(xi − xk). (207)

Функция расстояния и диагональная матрица весовых коэффициентов diag(λ), где λ =

[λ1, . . . , λn]
T, задаются экспертно в зависимости от вида прикладной задачи или же оптими-

зируются согласно назначенной функции ошибки. Необходимо, чтобы выбираемая функция

расстояния между словами ρ(x,y) была метрикой.
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Решим задачу кластеризации, используя EM-алгоритм [223] или алгоритм k-средних [253],

и поставим в соответствие каждому сегменту xi метку кластера yi из конечного алфавита,

полученного по результатам кластеризации.

Построение прогноза заключается в следующем. Пусть известны последние H элементов

временного ряда s, причем H < n. Обозначим их u = [sT−H , . . . , sT ]T. Найдем k векторов x̄i,

ближайших к вектору u. Здесь x̄i означает, что вектор содержит только H первых элементов

вектора xi. Прогнозируемые значения временного ряда определяются как последние n−H−1

элементов линейной комбинации k векторов xi,

x = [xi1 , . . . ,xik ]w при ограничении ‖w‖1 = 1.

Вектор весов w может быть оптимизирован или задан экспертно, например w = [ 1
k
, . . . , 1

k
]T.

Таблица 22. Результаты прогноза объемов потребления электроэнергии.

Metrics (208) (209) (210)

best k 6 26 6

λ 1 0,6 1

p 2 2 5

SMAPE,% 7,44 5,74 7,37

В таблице 22 и на рисунке 83 приведены результаты локального прогнозирования. Слева

рисунке 83 зеленым цветом показан исходный ряд, синим — прогноз, красным — невязка.

При прогнозировании были использованы следующие метрики:

евклидова:

ρE(x,y) =
√

(x− y)T (x− y). (208)

диагонально взвешенная евклидова:

ρwE(x,y) =

√

(x− y)TΛ2(x− y), где Λ = diag(λ). (209)

метрика Минковского Lp:

ρLp
(x,y) = (

∑

i

|xi − yi|p)1/p, где p ∈ N. (210)

Для оценки качества прогноза используется функция ошибки

SMAPE(Symmetric Mean Absolute Percent):

SMAPE(s, ŝ, n, t) =
1

t

t∑

i=1

|ŝn+i − sn+i|
|ŝn+i + sn+i|/2

∗ 100%. (211)
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Рис. 83. Величина ошибки и построение прогноза объема потребления электроэнергии.

6.2.3. Кусочно-линейная аппроксимация

Рассмотрим один временной ряд s = [s1, . . . , sT ]
T и соответствующий набор отсчетов вре-

мени 1, . . . , T . Как и ранее, считаем, что отсчеты времени тождественны индексам элементов

вектора s. Построим кусочно-линейную аппроксимацию ряда, считая дисперсию σ̂2
r вектора

регрессионных остатков r = s − f известной и ненулевой. Для нахождения границ сегмен-

та (τk, τk+1) используем метод поэлементного добавления значений временного ряда в ло-

кальную регрессионную выборку.

Определение 21. Локальная регрессионная выборка — подмножество D′ ⊆ D = (X,y) =

{(xi, yi)} пар значений зависимой и независимых переменны, заданное множеством из ин-

дексов {i}, таким образом, что в локальную выборку D′ попадает любая пара (xi, yi) —

элемент множества D с индексом i,

D′ = {(xi, yi) ∈ D : imin 6 i 6 imax},

где границы imin, imax заданы.

Пусть левая граница τk сегмента с номером k известна. Пошагово найдем правую грани-

цу τk+1 этого сегмента. На каждом шаге алгоритма локальная выборка sk содержит элемен-

ты sτ временного ряда, sk = {sτk , . . . , sτk+1
}. На первом шаге алгоритма она содержит два

элемента с индексами τk и τk + 1 = τk+1. Построим линейную регрессию fk(w, τ) = w1 + w2τ

на этой локальной выборке. Вычислим дисперсию σ2
rk

σ2
rk

=
‖rk − 1r̄k‖2

mk

,

регрессионных остатков

rk = [sτk − fk(w, τk), . . . , sτk+1
− fk(w, τk+1), ]

T
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где r̄k — среднее арифметическое значение элементов вектора rk и mk — число его элементов.

При выполнении условия
σ̂2
r

σ2
rk

< 1

считаем, что правая граница k-го сегмента τk+1 найдена. В противном случае добавляем

следующий по порядку элемент в локальную выборку.

0 5 10 15 20
−2

0

2

4

6

8

Time t, s

A
cc
el
er
a
ti
o
n
,
x
,y
,z

Рис. 84. Размеченный временной ряд акселерометра

При разметке временного ряда ставим в соответствие элементу sτ значение uτ = 1, если

коэффициент w2 линейной модели fk, которая приближает сегмент (τk, τk+1) ∋ τ , больше

нуля. В противном случае uτ = 0. На рисунке 84 показан временной ряд и его разметка.

Ломаной показаны сегменты, на которых разметка неизменна.

6.2.4. Сегментация фазовой траектории

Рассмотрим набор временных рядов s1, . . . , sj . . . , sℓ, удовлетворяющих условиям (201).

Значения временных рядов sτ1, . . . , sτℓ в моменты времени τ ∈ {1, . . . , T} образуют ломаную

фазовую траекторию или годограф в пространстве Rℓ. Предлагается так разбить отрезок

времени (1, T ) на сегменты, чтобы норма разности проекции локальной выборки на под-

пространство заданной размерности и самой локальной выборки не превосходила заданное

значение σ̂2
r .

Рассмотрим пример-иллюстрацию использования сингулярного разложения. Пусть пове-

дение некоторой биосистемы описывается набором параметров, образующих фазовое про-

странство. Например, пусть x1, x2 — концентрация кислорода в крови и частота сердечных

сокращений пациента. Эти параметры, изменяясь во времени, образуют траекторию его жиз-

ни. Фазовое пространство разбито на три непересекающихся области: жизни A — alive, смер-

ти D — dead и границу между ними B — boundary, рис. 85. Гипотеза: в точке, максимально

удаленной от границ B внутри области A энтропия системы максимальна, в то время как

у границы поведение системы становится ригидным, жестким, эффективная размерность

траектории снижается.
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Рис. 85. Поведение биосистемы в экстремальных условиях.

Для нахождения границ сегментов фазовой траектории найдем сингулярное разложение

матрицы X, состоящей из соединенных векторов s1, . . . , sℓ:

[s1, . . . , sℓ] = X = UΛVT, где Λ = diag(λ1, . . . , λℓ).

Под эффективной размерностью d матрицы X будем понимать количество сингулярных чи-

сел, превосходящих заданное λd. Требуется найти значения локальной выборки, лежащие

в пространстве эффективной размерности Rd или меньшей размерности. При этом задано

среднеквадратичное отклонение σ̂r и размерность d.

Найдем k-й сегмент. Пусть левая граница τk сегмента с номером k известна. На первом

шаге локальная выборка sk содержит два элемента временного ряда, sk = {sτk , sτk+1}. Найдя

сингулярное разложение, получим значение сингулярного числа λd. Если значение

λd(k)− σ̂2
r 6 0,

то добавляем следующий элемент временного ряда в локальную выборку. В противном слу-

чае считаем правую границу τk+1 найденной.

Рис. 86. Фазовая траектория системы с аттрактором Лоренца и её сегменты.

В качестве примера рассмотрим сегментацию фазовой траектории аттрактора Лоренца.

Траектория задана системой обыкновенных дифференциальных уравнений






x′1(t) = −3(x1(t)− x2(t))

x′2(t) = −x1(t)x3(t) + 26.5x1(t)− x2(t)

x′3(t) = x1(t)x2(t)− x3(t)

(212)
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с начальными условиями x1(0) = x3(0) = 0, x2(0) = 1. Данная фазовая траектория лежит с

пространстве R3. Временные ряды s1, s2, s3 получены путем дискретизации решения данного

уравнения, а именно, значение элемента j-го временного ряда sτj = xj(t), j ∈ {1, 2, 3}. При

этом значение τ = τ(t) принадлежит конечному множеству {1, . . . , T}. На рис. 86 показана

двумерная проекция траектории системы с аттрактором Лоренца из трехмерного простран-

ства и одно из подмножеств ее сегментов, лежащее в двумерном пространстве.

6.2.5. Прогнозирование размеченных апериодических временных рядов

Пусть каждому элементу sτ временного ряда s поставлен в соответствие элемент uτ

из множества меток M некоторого конечного алфавита. Например, множество двух ме-

ток M = {«ряд возрастает», «ряд не возрастает»}, в дальнейшем для удобства множе-

ство M = {0, 1}. Требуется по предыстории этого временного ряда и, возможно, набора до-

полнительных временных рядов, спрогнозировать значение временного ряда u = u1, . . . , uT−1

в момент времени T . При этом предполагается, что существует по крайней мере одна зависи-

мость между значением метки и ее предысторией. Другими словами, не каждая предыстория

заведомо влечет появление заданной метки.

Пусть временной ряд удовлетворяет тем же условиям (201), что и в предыдущем разделе

с той лишь разницей, что значения uτ прогнозируемого ряда принадлежат множеству M,

а значения sij дополнительных временных рядов s1, . . . , sℓ принадлежат множеству R. Требу-

ется спрогнозировать значение метки uT временного ряда u в момент времени T . Для этого

построим матрицу X† так, чтобы столбец матрицы с индексом j являлся j − 1-м временным

рядом, j ∈ {2, . . . , ℓ+ 1}, а первым столбцом — временной ряд u. Разбиение матрицы X† на

подматрицы имеет вид

X† =









u1 s11 . . . s1ℓ

. . . . . .
. . . . . .

uT−1 s(T−1)1 . . . s(T−1)ℓ

uT









.

Пусть значение uT зависит от исторических значений временного ряда за последние H отсче-

тов времени τ , и пусть эта зависимость линейна. Построим выборку D = (X,y) следующим

образом. Вектор зависимых переменных y тождественно равен вектору u. Строка xT

τ матри-

цы плана X состоит из соединенных наборов значений временных рядов

xT

τ = [s(τ−1)1, . . . , s(τ−H−1)1, . . . , s(τ−1)ℓ, . . . , s(τ−H−1)ℓ].

Другими словами, строка c номером τ матрицы плана X есть векторизованная подматрица,

состоящая из значений временных рядов









s(τ−H−1)1 . . . s(τ−H−1)ℓ

. . .
. . . . . .

s(τ−2)1 . . . s(τ−2)ℓ

s(τ−1)1 . . . s(τ−1)ℓ









.
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Принимая логистическую регрессию как модель зависимости y = µ(Xw), после оценки

вектора параметров ŵ, получаем прогнозируемое значение

sT = µ(xT

mŵ) =
1

1 + exp(−xT

mŵ)
.

Как и в предыдущем разделе, даны

1) матрица плана X = [xT

1 , . . . ,x
T

i , . . . ,x
T

m−1], иначе X = [χ1, . . . ,χj , . . . ,χn]
T, множество ин-

дексов столбцов J = {1, . . . , n}, множество индексов строк I = {1, . . . , m− 1},

2) вектор значений зависимой переменной y, который вместе с матрицей плана образует

регрессионную выборку D = (X,y),

3) класс моделей {fA = µ(XAwA)|A ⊆ J },

4) гипотеза порождения данных y ∼ B(f ,B) и функция ошибки S(wA|fA,D), заданная со-

гласно этой гипотезе.

Так как предполагается, что только часть элементов размеченного временного ряда описыва-

ются регрессионной моделью, предлагается разбить множество индексов элементов выборки

на две части, прогнозируемую B и непрогнозируемую B∅. Требуется найти множество индек-

сов Â столбцов и множество индексов B̂ строк матрицы плана X такие, что

(Â, B̂) = argmin
A⊆J , B⊆I, |B|>b

S(ŵA|fA,DB). (213)

Как и ранее проблема нахождения модели оптимальной сложности (переобучения) решается

введением соответствующей функции ошибки или методами скользящего контроля.

Аргумент DB означает, что при вычислении значения функции ошибки используются

только элементы выборки D с индексами B. Константа b назначается экспертно. При по-

становке задачи считаем, что оценка ŵA параметра модели была получена ранее согласно

гипотезе порождения данных на подвыборке DB.

6.3. Кластеризация с использованием наборов парных расстояний

в ранговых шкалах

Для решения задачи локального прогнозирования временных рядов требуется быстрый

алгоритм кластеризации. Причем этот алгоритм должен выявлять единственный кластер на

множестве объектов — подпоследовательностей, или сегментов, временных рядов. Для выяв-

ления кластеров используются парные расстояния между подпоследовательностями. Отли-

чительной особенностью алгоритма является то, что не требуется строить полную матрицу

парных расстояний, что снижает сложность вычислений. При кластеризации рассматрива-

ются только ранги расстояний между подпоследовательностями.

Предлагаемый алгоритм был разработан в ходе решения задачи прогнозирования вто-

ричной структуры белка по первичной [29, 34]. Предлагалось найти соответствие между
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«типичными» последовательностями аминокислотных остатков, кодируемых буквами два-

дцатибуквенного алфавита и между соответствующими им вторичными структурами, коди-

руемыми буквами трехбуквенного алфавита. Для этого предполагалось составить словарь

часто встречающихся, «типичных» последовательностей аминокислотных остатков, то есть,

решить задачу кластеризации. Особенностью задачи является то, что база данных остатков,

подпоследвательности которых требуется кластеризовать, содержит 11 миллионов записей

длиной 20–33000 символов каждая [103, 104]. Такой объем данных выдвигает ограничение

на сложность алгоритма кластеризации; предполагается возможность параллельного запус-

ка этого алгоритма. Ранее были предложены алгоритмы быстрой кластеризации объектов,

описанных в номинальных шкалах [246, 160, 348, 358, 392].

Основная идея предложенного похода заключается в следующем. Каждая последователь-

ность аминокислотных остатков разбивается на слова одинаковой длины. Длина слова за-

дается до начала кластеризации и выбирается исходя из результатов анализа записей о вто-

ричных белковых структурах. Множество полученных слов является множеством кластери-

зуемых объектов. На этом множестве задана метрика, и далее его объекты будут называться

точками, погруженными в метрическое пространство.

Вышеперечисленные алгоритмы кластеризации требуют матрицу парных расстояний

между всеми парами точек из множества, что существенно повышает сложность алгоритма.

Предложенный алгоритм требует только расстояния между выделенными точками, назы-

ваемыми далее ρ-сетью и всеми остальными точками. При этом расстояния от некоторой

выделенной точки до прочих ранжируются, и кластеризация выполняется по ранговым зна-

чениям. Таким образом алгоритм состоит из следующих основных шагов:

1) разбиение описаний первичных структур белков,

2) задание опорного множества (ρ−сети),

3) вычисление расстояния между некоторыми парами объектов,

4) нахождение метрических сгущений, кластеризация.

Далее в работе описаны метрики, используемые при кластеризации последовательностей

аминокислотных остатков и их свойства, указан способ построения ρ-сети, описан предложен-

ный алгоритм кластеризации и указана его сложность. Работу завершает вычислительный

эксперимент, который содержит описание данных, базового алгоритма и принятого функ-

ционала качества кластеризации. Работу завершает сравнение и анализ результатов работы

двух алгоритмов.

6.3.1. Функции расстояния между словами

Опишем способ получения множества объектов кластеризуемой выборки. Задана це-

почка букв двадцатибуквенного алфавита, x1, . . . , xi, . . . , xp длиной p, соответствующая

первичной структуре некоторого белка. Множеством объектов будем считать множество

{xi, . . . , xi+n−1|i = 0, . . . , p − n − 1} слов заданной длины n. При наличии нескольких це-

почек букв множества слов, полученные для каждой цепочки объединяются. Представим



237

Рис. 87. Точки на плоскости, как пример последовательности аминокислотных остатков.

каждое полученное слово в виде точки на плоскости. Такое представление позволяет по-

грузить n + 1 точку в n-мерное пространство и, задав метрику между парами точек, найти

наиболее близкие пары. Множества точек, имеющие относительно малые парные расстояния,

будем называть метрическим сгущением.

Рассмотрим два слова: x = (x1, ..., xn) и y = (y1, ..., ym). В общем случае слова x и y

могут быть разной длины. Необходимо, чтобы выбираемая нами функция расстояния между

словами ρ(x,y) была метрикой. Для этого должны быть выполнены следующие условия:

1) условие тождества, ρ(x,y) = 0 ⇔ x = y;

2) условие симметрии, ρ(x,y) = ρ(y,x);

3) неравенство треугольника ρ(x, z) 6 ρ(x,y) + ρ(y, z).

Симметрическая разность на неупорядоченных множествах. Данная функция рас-

стояния между словами x и y определена как

ρ(x,y) =
|x|+ |y| − 2S(x,y)

|x|+ |y| − S(x,y)
,

где S(x,y) — пересечение наборов x и y как неупорядоченных множеств: каждому элементу

набора x ставится в соответствие тождественный ему элемент набора y без учета индексов

последнего. Число полученных пар является значением функции S. При этом множества X,

Y считаются неупорядоченными. Знак | · | означает мощность множества, в данном случае —

число букв в слове. Элементы слов x и y индексированы, на множестве индексов задано

отношение полного порядка.

Для данного расстояния, очевидно, выполнено условие симметрии. Также выполнено

неравенство треугольника. Докажем его для случая |x| = |y| = |z|, потому что предло-

женный алгоритм будет использовать только одинаковые длины слов.

Обозначим

a =
S(x,y)

|x|+ |y| , b =
S(y, z)

|y|+ |z| , c =
S(x, z)

|x|+ |z| .
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Тогда

ρ(x,y) + ρ(y, z)− ρ(x, z) =
|x|+ |y| − 2S(x,y)

|x|+ |y| − S(x,y)
+

|y|+ |z| − 2S(y, z)

|y|+ |z| − S(y, z)
− |x|+ |z| − 2S(x, z)

|x|+ |z| − S(x, z)
=

= 1− S(x,y)

|x|+ |y| − S(x,y)
− S(y, z)

|y|+ |z| − S(y, z)
+

S(x, z)

|x|+ |z| − S(x, z)
=

= 1− a

1− a
− b

1− b
+

c

1− c
=

1− 2a− 2b+ 3ab+ ac+ bc− 2abc

(1− a)(1− b)(1− c)
.

Чтобы неравенство треугольника выполнялось, необходимо, чтобы эта дробь была неотри-

цательной. Поскольку все a, b, c ∈ [0; 1
2
], знаменатель является положительным числом. За-

метим также, что для a, b и c выполнено соотношение c > a + b − 1
2
. Это так, потому что

наибольшее по мощности множество букв, состоящее из объединения пересечений слов x,y и

y, z, не содержащихся в пересечении x, z, равно |x|. Обозначим мощность этого объединения

за u, а мощность множества букв, состоящего из объединения пересечений слов x,y и y, z,

содержащихся в пересечении x, z, за u′. Тогда:

S(x,y)

|x|+ |y| +
S(y, z)

|y|+ |z| =
u+ u′

2|x| 6
1

2
+ c.

Поэтому числитель дроби

1− 2a− 2b+ 3ab+ ac+ bc− 2abc > 1− 5

2
a− 5

2
b+ 6ab+ a2 + b2 − 2a2b− 2ab2.

Заметим, что эта дробь симметрична по a и b, поэтому для глобального минимума должно

выполняться a = b. Симметризуя это выражение, получаем:

1− 5a+ 8a2 − 4a3,

которое > 0 при a ∈ [0, 1
2
]. Значит, неравенство треугольника в этом случае выполнено.

Однако, условие тождества не выполнено, потому что данное расстояние между любой

парой слов, состоящией из одинакового набора букв, равно нулю.

Симметрическая разность на упорядоченных множествах. Данная метрика опре-

делена как

ρ(x,y) =
|x|+ |y| − 2G(x,y)

|x|+ |y| −G(x,y)
,

где G(x,y) — мощность наибольшей общей подпоследовательности символов в словах x и

y. Мощность пересечения двух упорядоченных наборов символов (наибольшей общей под-

последовательности) равна длине диагонального пути наименьшей стоимости, определенно-

го в (214).

Данное расстояние является метрикой, потому что для него выполнены условие симмет-

рии и неравенство треугольника (аналогично предыдущему случаю), а также верно условие

тождества:

ρ(x,y) = 0 ⇔ G(x,y) = |x| = |y|,
а это возможно только в том случае, когда наибольшая общая подпоследовательность сов-

падает со всем словом, то есть два слова тождественны. Область значения данной функции
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(b) Оптимальное выравнивание

Рис. 88. Матрица парных расстояний, пример.

расстояния находится на отрезке [0; 1]. На рис. 88 слева показана матрица парных расстоя-

ний D для этой метрики. Каждый элемент матрицы есть значение функции расстояния для

соответствующей пары слов.

Оптимальное выравнивание. Подсчет этого расстояния сводится к поиску оптимально-

го выравнивания между двумя словами. Расстоянием между двумя буквами xi, yj этих слов

является булева функция:

di,j =







1, если xi 6= yj,

0, иначе.

Для вычисления расстояния между словами составим M(n+1×m+1)-матрицу стоимости.

Обозначим индекс первой строки i = 0 и индекс первого столбца j = 0. Присвоим

M(0, 0) = 0;

для всех i = 1, ..., n и j = 1, ..., m присвоим

M(0, j) =M(i, 0) = ∞;

для всех i = 1, ..., n и j = 1, ..., m вычислим последовательно все элементы матрицы M по

формуле

M(i, j) = d(xi, yj) + min
(
M(i− 1, j − 1),M(i− 1, j),M(i, j − 1)

)
.

Искомым расстоянием между словами x и y будет последний элемент этой матрицы:

ρ(x, y) =M(n,m). (214)

Стоит отметить, что данное расстояние является частным случаем расстояния Левенштей-

на [47], то есть, является метрикой. На рис. 88 справа показана матрица парных расстояний

для случая d(x, y) ∈ [0, 1], длина слов m = n = 8. На рис. 89 показана матрица стоимости M

алгоритма оптимального выравнивания. Путь наименьшей стоимости показан точками. Его

начало и конец фиксированы в элементах с индексами (0,0) и (n,m).
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Рис. 89. Матрица стоимости оптимального выравнивания.

6.3.2. Описание алгоритма кластеризации ρ−сетью

Опишем алгоритм, позволяющий быстро кластеризовать объекты в произвольном мет-

рическом пространстве. На рис. 90 показана симметричная относительно главной диагонали

матрица парных расстояний для 40 точек. При создании нижеописанного алгоритма пре-

следовалась цель существенно снизить сложность процедуры кластеризации относительно

квадратичной, требуемой для построения матрицы парных расстояний между всеми объек-

тами кластеризуемого множества.

Обозначим X = {x1, ...,xN} — множество, состоящее из N точек. Задана функция рас-

стояния ρ(xi,xj), определенная на всех парах точек из X, для которой выполняются условия

метрики. Требуется найти множество K ⊂ X — подмножество X, образующее метрическое

сгущение. Сгущением называется множество близких, в смысле заданной метрики, точек,

образующих компактные области. Считается, что множеству точек, образующих сгущение,

принадлежат все точки выпуклой комбинации этого множества. Предполагается, что бу-

дет найдена последовательность сгущений K посредством итеративной процедуры следую-

щего вида. Из заданного набора X вычитаем множество точек K, образующих сгущение,

X∗ = X \ K. Находим сгущение K∗ на полученном наборе X∗. Процедура повторяется до

нахождения всех сгущений {K}.
Для отыскания множества K введем понятие ρ−сети и построим матрицу D парных

расстояний между точками, принадлежащими ρ−сети, и всеми точками множества X: D =

{di,j}, где i ∈ {1, ..., n} = I — индекс объекта ρ−сети, а j ∈ {1, ..., N} = J — индекс объекта

из X.

ρ−сеть — это множество X ′ = {xk|k ∈ I} фиксированной мощности n, собственное под-

множество X, состоящее из объектов, которые находятся на максимальном расстоянии друг

от друга, т.е.

I = argmax
j∈J

min
i∈I/j

ρ(xi,xj), I ⊂ J.
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Рис. 90. Матрица парных расстояний для 40 точек.

Точки, входящие в ρ−сеть X ′, также принадлежат множеству X, X ′ ⊂ X, причем пред-

полагается, что N = |X| ≫ n = |X ′|. Множество точек ρ−сети отыскивается с помощью

следующей процедуры.

6.3.3. Выбор точек для ρ-сети

Положим изначально X ′ = ∅ — множество точек ρ-сети.

1. Взять произвольный элемент y ∈ X.

2. Вычислить x′ = argmax
x∈X

ρ(x,y), присвоить X ′ := X ′ ∪ x′.

3. Пока |X ′| < n: вычислить x′ = argmax
x∈X

min
z∈X′

ρ(x, z), присвоить X ′ := X ′ ∪ x′.

Отметим, что предложенный алгоритм имеет сложность O(n2N), где n2 ≪ N , то есть линей-

ную по числу объектов.

Построение матрицы парных расстояний. Построим матрицу D парных расстояний

между точками, принадлежащими ρ-сети и всеми точками из X: D = {dij}, dij = ρ(xi,xj),

где i ∈ I — индекс объекта сети, а j ∈ J — индекс объекта из X. Матрица D ∈ Rn×N
+

содержит в своих строках расстояния от каждого объекта ρ-сети до каждого объекта из

всего множества X.

Сортировка матрицы парных расстояний. Для каждой строки i матрицы D зададим

функцию φi, которая индексам элементов строки ставит в соответствие индексы отсортиро-

ванных по возрастанию расстояний от i-й точки ρ-сети до всех точек множества X:

φi : {ρij |j ∈ J} 7→ {sort(ρik)|k ∈ J}.

Функция φi задает преобразование J → J — биекцию

φi : j 7→ k, j, k ∈ I.
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Рис. 91. Сложность алгоритма поиска сгущения относительно количества слов.

Построим матрицу, содержащую в строках индексы rij ∈ N отсортированных значений рас-

стояний

R = {rij|rij = φi(j)}

и индексы r′ij ∈ N обратных относительно операции сортировки значений

R′ = {r′ik|r′ik = φ−1
i (k)}.

Другими словами, матрица R ∈ Nn×N содержит в своих строках индексы расстояний от i-й

точки ρ-сети до j-й точки из множества X, отсортированных по возрастанию. Пример для

фиксированного i и j ∈ {1, 2, 3} показан в табл. 23.

Таблица 23. Пример строки матрицы парных расстояний и соответствующих ранговых

значений.
Индексы точек 1 2 3

ρij 0.7 0.3 0.5

sort(ρij) 0.3 0.5 0.7

rij 3 1 2

r′ij 2 3 1

6.3.4. Поиск метрического сгущения

На строках матрицы R′ зададим окно заданной ширины, включающее dN = ⌊1
2
κ · N⌋

элементов строки. Здесь κ — задаваемый параметр, описывающий выраженность сгущения.

За центр окна примем k-й столбец матрицы R′, индекс k ∈ {dN + 1, ..., N − dN − 1} .

Найдем кластер K с наибольшим количеством элементов, |K| → max. Для этого для

каждого номера точки j ∈ J в каждой строке с номером i матрицы R′ найдем окрестность

Ki ⊂ J , соседние элементы j-го столбца, мощностью 2dN + 1. Кластером K будет являться
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пересечение множеств Ki по всем i:

K =

n⋂

i=1

Ki.

Опишем процедуру поиска сгущения. Примем изначально K := J . Далее

1) для всех индексов точек множества X j ∈ J и для всех индексов точек ρ-сети i ∈ I:

2) найти ближайших соседей Ki точки xj ∈ X относительно точки ρ−сети xi ∈ X ′:

Ki = {r′is : s ∈ {rij − dN , ..., rij + dN }}. (215)

3) Присвоить K := K ∩Kj.

Примечание: на шаге 2) алгоритма возникнет ситуация, когда

rij − dN < 0, или rij + dN > N.

В первом случае, надо брать s: s ∈ {1, ..., 2dN + 1}, а во втором s: s ∈ {N − 2dN , ..., N}.

Сложность алгоритма. Предлагаемый алгоритм имеет сложность O(n2N) при постро-

ении матрицы расстояний D, O(nN logN) при сортировке строк матрицы D и O(nN) при

поиске метрических сгущений. На рис. 91 показана сложность предложенного алгоритма, в

сравнении со сложностью алгоритма k-Means.

Функция ошибки кластеризации. Для оценки качества кластеризации была введена

следующая функция ошибки. Среднее внутрикластерное расстояние должно быть как можно

меньше:

F0 =

∑

i<j

[ki = kj]ρ(xi,xj)

∑

i<j

[ki = kj]
→ min, i, j ∈ {i, . . . , N}.

Здесь индикаторная функция [ki = kj ] означает, что если точки с индексами i и j принадле-

жат одному и тому же кластеру с номером k, то возвращается единица, в противном случае —

ноль. Среднее межкластерное расстояние должно быть как можно больше:

F1 =

∑

i<j

[ki 6= kj]ρ(xi,xj)

∑

i<j

[yi 6= yj ]
→ max i, j ∈ {i, . . . , N}.

Зададим функцию ошибки кластеризации как отношение среднего внутрикластерного

и среднего межкластерного расстояния:

Q =
F0

F1
→ min .

Результатом работы алгоритма кластеризации должен быть кластер максимальной мощ-

ности, содержащий слова максимальной длины.
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Базовый алгоритм. В качестве базового алгоритма, с которым сравнивался предложен-

ный, был выбран алгоритм «k средних», или k-Means [348, 358]. В качестве параметра алго-

ритм принимает на вход количество кластеров, а на первом шаге делает начальное прибли-

жение центров кластеров, которые затем итеративно пересчитывает.

Алгоритму также необходимо признаковое описание объекта: набор функций fj : X →
R, j = 1, ..., m, где m — количество признаков. В случае точек на плоскости, признаковое

описание состоит из координат точек. Алгоритм выполняется следующим образом:

1) сформировать начальное приближение центров всех кластеров: µk, k = 1, ..., K,

2) отнести каждый объект к ближайшему центру:

ki := argmin
k∈K

ρ(xi, µk), i = 1, ..., N,

3) вычислить новое положение центров:

µkj :=

N∑

i=1

[ki = k]fj(xi)

N∑

i=1

[ki = k]

,

4) повторять шаги 2, 3 пока значения ki не перестанут изменяться.

Во второй формуле используется признаковое описание точек, функция fj — j-е значение век-

тора описания точки. В случае, когда используется только матрица парных расстояний, j-м

признаком i-й точки считается соответствующий элемент i-й строки матрицы парных рас-

стояний fj(xi) = ρ(xi,xj), j ∈ {1, . . . , N}, в которой строка — набор расстояний от этой точки

до всех остальных.

Сравнение работы двух алгоритмов кластеризации. Приведем сначала результаты

визуального сравнения на синтетической выборке, а затем опишем результаты кластериза-

ции аминокислотных последовательностей. На рис. 92 показаны результаты кластеризации.

Алгоритм k-Means, получив в качестве входного параметра число кластеров, при «неудач-

ном» начальном приближении центров кластеров разбил один порожденный кластер на две

части, а два оставшихся объединил, см. риc 92 а). Предложенный алгоритм не получал число

кластеров в качестве входного параметра и выявил четыре кластера, объединив последние

два, что для решения рассматриваемой прикладной задачи является корректным результа-

том.

На рис. 93 показаны два сгущения точек. Так как в алгоритме k-Means, в отличие от ран-

гового, в качестве параметра задано число кластеров, то кластеры обнаружены некорректно,

см. рис. 93 a). Ранговый алгоритм на рис. 93 обнаружил два кластера с удовлетворительной

ошибкой.

На рис. 94 графике показаны два кластера, содержащие по 250 точек. У одного из кла-

стеров разброс значений значительно меньше, чем у второго, и геометрически он целиком

лежит внутри второго. Алгоритм K-Means не может корректно отделить такие кластеры, это
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Рис. 92. Сравнение работы алгоритма k-Means и алгоритма ранговой кластеризации, пять

кластеров.
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Рис. 93. Сравнение работы алгоритма k-Means и алгоритма ранговой кластеризации, два

кластера.
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показано на рис. 94 a). В данном случае алгоритм поместил в один кластер 375, а в другой 125

точек. Алгоритм ранговой кластеризации гораздо лучше выделил сгущение, см. рис. 94 b),

получив в результате 274 точки в одном кластере и 226 в другом.

Предлагаемому алгоритму кластеризации, в отличие алгоритмов кластеризации ти-

па k-Means, не требуется признаковое описание объектов, достаточно только матрицы пар-

ных расстояний. В связи с тем, что используются только ранговые значения набора рас-

стояний от некоторой точки до всех остальных, предложенный алгоритм нечувствителен к

«небольшим» изменениям функции расстояний, что важно, если у исследователя нет точной

информации о виде этой функции.

Таблица 24. Сравнение результатов работы алгоритмов на последовательностях

аминокислотных остатков.
Алгоритм Точек в класте-

рах

Найдено кла-

стеров

Качество кла-

стеризации

Сложность алго-

ритма

k-Means 1 3 3 O(NmK+1 logN)

Ранговый 1 3 3 O(nN logN)

Предложенный метод был использован для классификации временных рядов давления в

камере внутреннего сгорания дизельного двигателя. Непосредственное вычисление значения

пути оптимальной стоимости не позволило решить задачу классификации исследуемых вре-

менных рядов, так как стоимость двух несовпадающих путей временных рядов из разных

классов часто оказывалась одинаковой. Создание моделей, аппроксимирующих эквивалент-

ные временные ряды, также не позволило решить данную задачу, так как классификацию

при этом приходилось выполнять в пространстве параметров, которое имело большую раз-
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Рис. 94. Сравнение работы алгоритмов, случай вложенных кластеров.



247

мерность. Предложенный метод позволил разделить данные временные ряды на кластеры,

так как классификация выполняется в пространстве параметров небольшой размерности.

6.4. Прямая и обратная задача авторегрессионного

прогнозирования

Рассмотрим обратную задачу макроэкономического управления, т. е. задачу определе-

ния множества таких траекторий управляемых переменных (инструментов экономической

политики), которые, — при заданных ограничениях на диапазон варьирования и глад-

кость управляющих воздействий, — обеспечивают выход ключевых индикаторов социально-

экономического развития страны (региона) на заданные уровни за определенное число тактов

(кварталов, лет). В качестве модели объекта управления выберем эконометрическую модель

экономики страны в форме системы одновременных уравнений (см. СОУ-модель в [115]).

6.4.1. Модель управления с обратной связью

Для описания модели управления введем следующие понятия.

Субъект управления — орган (лицо), принимающий решение. Другими словами, под субъ-

ектом управления мы будем понимать орган (в частном случае состоящий из одного лица),

который определяет цели управления, выбирает управляющее воздействие, наблюдает за

последствиями управления и оценивает результат.

Рис. 95. Схема управления с обратной связью.

Объект управления — социально-экономическая система (страна, регион, см. рис. 95),

эффективность функционирования которой описывается набором результирующих (эндо-

генных) переменных y = [y(1), ..., y(m)]T. Значения этих показателей yt = [y
(1)
t , ..., y

(m)
t ]T в

некоторый момент времени t определяют состояние объекта управления. Объект изменяет

свое состояние под влиянием управляющих воздействий ut = [u
(1)
t , ..., u

(p)
t ]T. На состояние

объекта влияют также переменные zt = [z
(1)
t , ..., z

(k)
t ]T внешней среды, в которую он погру-

жен. Совокупность управляемых (или частично управляемых) переменных u и переменных

внешней среды z будем называть экзогенными переменными X. При отсутствии экспертно
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задаваемой целевой функции (скалярного измерителя степени эффективности функциони-

рования системы) ϕ(y) мы будем использовать в качестве скалярного индекса состояния

системы первую главную компоненту результирующих (эндогенных) переменных.

q =
m∑

i=1

θ1i(y
(i) − ȳ(i)). (216)

В соотношении (216) вектор [θ11, ..., θ1m]
T это собственный вектор ковариационной мат-

рицы Σy результирующих переменных y, соответствующий наибольшему ее значению, а

ȳ(1), ..., ȳ(m) — средние значения наблюдаемых результирующих переменных (усреднение —

по базовому наблюдаемому периоду времени).

Пусть мы располагаем данными (ut, zt,yt) о поведении объекта в течение t0 тактов вре-

мени t = 1, 2, ..., t0 и пусть заданы горизонт управления — число тактов времени n и множе-

ство допустимых траекторий u(t1, tn) в p-мерном фазовом пространстве управляющих воз-

действий. Допустимость траектории определяется ограничениями на общий диапазон и глад-

кость варьирования переменных u(1), ..., u(p) на рассматриваемом отрезке времени t = t1, ..., tn,

так, что элементом множества u(t1, tn) является p-мерная траектория u(t1,tn) = {[u(1)t , ..., u
(p)
t ]T,

t = t1, ..., tn}.
Пусть, наконец, мы располагаем целевыми значениями результирующих переменных ȳtn

или одного из скалярных индикаторов ϕ̄tn = ϕ(ytn) или qtn =
∑m

j=1 θ1j(y
(j)
tn − ȳ(j)), а также

допустимыми окрестностями этих значений, — соответственно ε(ȳtn), ε(ϕ̄tn) или ε(q̄tn).

Тогда обратная задача сводится к определению такого подмножества ∆u(t1, tn) множества

допустимых траекторий u(t1, tn), которые при заданных (спрогнозированных) значениях пе-

ременных внешней среды zt, t = t1, ..., tn обеспечивали бы следующие включения:

ytn(utn , ztn) ∈ ε(ȳtn) при (ut1 , ...,utn) ∈ ∆u(t1,tn).

или ytn(utn , ztn) ∈ ε(ϕ̄tn)

или ytn(utn , ztn) ∈ ε(q̄tn)

Таким образом, для решения рассматриваемой задачи макроэкономического управления

необходимо выполнение следующих этапов.

1. Выбираются субъект и объект управления. Составляется список управляющих воздей-

ствий, или альтернатив управления. Выбирается цель управления, которая в дальней-

шем будет служить критерием для принятия решений. На основании отчетов о функ-

ционировании объекта управления назначаются три типа переменных:

– управляемые переменные u — те переменные, которые зависят непосредственно от

принятых альтернатив управления;

– переменные внешнего воздействия на объект z: эти переменные не зависят от

управления, а определяются внешней средой, так что их значения в моменты

t1, ..., tn приходится предсказывать, поскольку от них зависит состояние объекта;

– результирующие, определяющие состояние объекта, т. е. те переменные y, которые

характеризуют эффективность функционирования объекта.
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Определяется зависимость переменных состояния объекта y от экзогенных перемен-

ных u и z. Эта зависимость описывается математической моделью объекта. Для опре-

деления связи между переменными модели выполняется тест причинно-следственной

связи Грэнджера, который заключается в следующем. Каждая переменная, включа-

емая в модель управления либо сама влияет на состояние объекта, либо изменяется

под влиянием других переменных. Если изменения переменной a предшествуют изме-

нениям переменной b (при наличии статистической связи между ними), но не наоборот,

то переменная b зависит от переменной a. При выборе переменных для модели управ-

ления исключаются безразличные переменные — те, от которых не зависит состояние

объекта, и которые не изменяются под влиянием других переменных. Таким образом

множество переменных разбивается на подмножества управляемых, неуправляемых и

зависимых переменных.

Определяется зависимость управляемых переменных u от альтернатив управления. Та-

кая зависимость называется математической моделью субъекта. Назначается цель

управления; она может задаваться значением вектора состояния ȳtn в заданный мо-

мент времени tn, либо значениями скалярных индикаторов ϕ̄tn , q̄tn , либо их целевыми

траекториями.

Результат выполнения вышеописанной процедуры показан в таблице 25.
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Таблица 25. Переменные эконометрической модели экономики страны.

Объект управления экономика Российской Федерации

Субъект управления правительство России

Цель управления за небольшое число шагов привести показатели эко-

номики в оптимальное состояние, определяемое ин-

дикатором

Альтернативы

управления

a — принять новую программу государственных со-

циальных расходов,

b — изменить тарификацию экспортируемых това-

ров.

Управляемые пере-

менные

gt — государственные социальные расходы, млрд.

руб.,

tr — средневзвешенные тарифы на экспорт, млрд.

руб.

Неуправляемые

переменные

in — инвестиции, млрд. руб.,

oi — цены на нефть, долл. за баррель,

ex — курс доллара США, руб.,

gd — обслуживание государственного долга, млрд.

руб.

Переменные состоя-

ния

y — ВВП, млрд. руб.,

x — экспорт, млрд. долл.,

p — инфляция, % к предыдущему периоду,

n — доходы населения, млрд. руб.,

m — импорт, млрд. долл.,

co — конечное потребление, млрд. руб.

Модель объекта Y = Y (U,Z), где

Y — вектор состояния, Y = [y,x,p,n,m,co]T ,

U — вектор управления, U = [gt,tr]T ,

Z — вектор внешнего воздействия, Z =

[in,oi,ex,gd]T

Модель субъекта U = U(a,b) строится на основе экспертных оценок

влияния принимаемых альтернатив управления на

управляемые переменные

Индикаторы состоя-

ния объекта

ϕ, q — скалярные величины, характеризующие состо-

яние объекта управления в целом
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В качестве эконометрической модели экономики, описанной в [115], предложена система

одновременных линейных уравнений

y = c20 + c21i(−4) + c22e− c22e(−1) + c23y(−1) + c24gd(−2) + c25dummy + ǫ2,

x = c10 + c11e + c12tr+ c13o(−1) + c14y(−1) + c15x(−1) + c16dummy + ǫ1,

p = c30 + c31e(−1) + c32o(−1) + c33dummy + ǫ3,

n = c40 + c41y + c42n(−1) + c43gt + c44dummy + ǫ4,

m = c50 + c51p + c52y+ c53m(−1) + c54x+ c55dummy + ǫ5,

co = c60 + c61p + c62y+ c63m + c64n+ c65co(−1) + c66dummy + ǫ6,

(217)

где cij — параметры модели. Добавочная переменная dummy ∈ {0, 1} отражает состояние

экономики до и после сентября 1998г., ǫ — авторегрессионный остаток.

Коэффициенты c10, ..., c66 модели оцениваются в результате оптимизации функции ошиб-

ки, включающей квадрат регрессионных остатков. Результатом является идентифицирован-

ная модель, с помощью которой прогнозируется состояние объекта.

Очевидно, что экзогенные переменные x, y, p, n, m, co влияют на эндогенные переменные

i, o, ex, gt, gd, tr в большей или меньшей степени, что определяется коэффициентами c. Не

исключено и нулевое влияние некоторых переменных на другие.

Разделим экзогенные переменные на управляемые и переменные внешнего воздействия.

Тогда модель прогноза на один квартал при заданном управлении gt, tr и предполагаемом

сценарном внешнем воздействии i, o, ex, gd может быть представлена как










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x

y

p

n
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co


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in

oi

ex

gd







, (218)

где C1, C2 — матрицы коэффициентов, вычисляемые для заданного времени прогноза с по-

мощью выражения (217).

6.4.2. Векторная авторегрессионная модель

Рекурсивная форма векторной авторегрессионной модели имеет вид

yt =

r∑

τ=0

(Aτyt−τ +Bτut−τ +Cτzt−τ ) +m+ εt. (219)

Здесь вектор управляющих воздействий uT и присоединенный к нему справа вектор внеш-

них воздействий zT образуют транспонированный вектор экзогенных переменных, а матрица

коэффициентов B и присоединенная к ней справа матрица C образуют матрицу коэффици-

ентов, на которую вектор экзогенных переменных умножается слева.

В выражении (219) переменная t — дискретное время t = 1, ..., t0, t0 — последний наблюда-

емый такт времени. Переменная τ обозначает глубину лагирования, причем τ = 1, ..., r < t0.

Также переменная m есть регрессионное среднее и εt — регрессионный остаток, в общем
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различный в каждый момент времени. Так как состояние y объекта управления описано m

переменными, а управляющие u и неуправляемые z внешние воздействия описаны соот-

ветственно q и k переменными, то матрицы A ∈ Rm×m,B ∈ Rm×p,C ∈ Rm×k и векторы

y,m, ε ∈ Rm,u ∈ Rp, z ∈ Rk.

Соответствие коэффициентов системы одновременных линейных уравнений (217), опи-

санных в эконометрической модели и элементов матриц A,B и C модели векторной авторе-

грессии (218) показано в таблице 26.

В первом столбце таблицы показаны значения лаговой переменный τ , которые соответ-

ствуют матрицам коэффициентов напротив. Левая часть уравнения (219) — вектор y показан

в верхней строке таблицы. Он получается путем суммирования всех матриц, транспонирован-

ных и умноженных слева на соответствующие векторы, которые показаны в правом столбце

таблицы, а также транспонированного вектора регрессионного среднего m (нижняя строка

таблицы) и вектора авторегрессионного остатка εt (в таблице не показан). Из таблицы вид-

но, что заполняемость ненулевыми коэффициентами невысока. В частности, все элементы

матриц A2,A3,A4,C3 равны нулю, а матрицы C2,C4 имеют только по одному ненулевому

элементу. В данной работе обсуждается только этот способ идентификации моделей (217)

и (219), поэтому анализ заполняемости матриц A,B,C и нахождение оптимальной глубины

лагирования τ останется за рамками статьи.

Представим выражение (219) в приведенной форме. Для этого перенесем вектор yt со-

стояния объекта управления в левую часть и получим выражение

Iyt −A0yt = B0ut +C0zt +
r∑

τ=1

(Aτyt−τ +Bτut−τ +Cτzt−τ ) +m+ εt,

здесь I — единичная матрица. Матрица линейного оператора A : y −→ y квадратная, диаго-

нальная вследствие предлагаемой эконометрической модели; следовательно, матрица (I−A0)

не вырождена. Найдем обратную матрицу (I−A0)
−1 и получим выражение

yt = (I−A0)
−1

(

B0ut +C0zt +

r∑

τ=1

(Aτyt−τ +Bτut−τ +Cτzt−τ ) +m+ εt

)

. (220)

Пусть известно состояние yt объекта управления и внешние воздействия ut, zt в течение

времени t = 1, ..., t0. Чтобы спрогнозировать состояние объекта управления для момента

времени t = t1 необходимо подставить в выражение (220) значения векторов измерений эк-

зогенных переменных ut, zt в моменты времени t = t0, t0 − 1..., t0 − r, вектора yt измерений

эндогенных переменных в моменты времени t = t0 − 1..., t0 − r, а также значения матриц

коэффициентов Aτ ,Bτ ,Cτ , где τ=0, ..., r.
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Таблица 26. Соответствие коэффициентов авторегрессионной модели экономики и

элементов матриц модели векторной авторегрессии.
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6.4.3. Модель субъекта управления

Модель субъекта определяет связь между списком альтернатив принимаемых решений и

переменных, которые управляют субъектом. Для заданных элементов a из множества аль-

тернатив A = {a} определяются значения управляемых переменных, u = u(A). Принятие

той или иной управляющей альтернативы определяет состояние субъекта управления и ин-

дикатора состояния объекта. И наоборот, задавая индикатор состояния или переменные со-

стояния объекта мы определяем значения управляемых переменных и находим ближайшую

соответствующую этим значениям альтернативу.

Согласно вышесказанному, цель управления объектом может быть задана двумя спосо-

бами. Первый способ: лицо, принимающее решение указывает, какие показатели объекта

должны быть получены в результате управления. Второй способ: лицо принимающее ре-

шение указывает, какое оптимальное значение индикатора состояния объекта должно быть

достигнуто.

6.4.4. Нахождение оптимального управляющего воздействия

При моделировании систем управления различают две задачи: прямую и обратную. Пря-

мая задача заключается в нахождении состояния объекта управления при заданных управ-

ляющих воздействиях, см. (220). Обратная задача заключается в нахождении управляющих

воздействий, которые требуются для достижения заданного состояния объекта при некото-

рых условиях, которые будут описаны ниже.

Прямая задача нахождения состояния yt объекта управления по экзогенным перемен-

ным ut, zt, согласно эконометрической модели (217) решается посредством выражения (220).

Для решения задачи управления, то есть, нахождения таких управляющих воздействий u,

которые бы привели объект управления в заданное состояние ȳ, рассмотрим зависимость

состояния yt от управляющих воздействий ut, ...,ut−r. Для этого выберем из множества эле-

ментов {u(1)t,τ , ..., u(k)t,τ , t = t0, τ = 0, ..., r} векторов ut−τ , такие элементы u∗(j), составляющие

вектор управления ut = [u∗(1), ..., u∗(k)]T что для i = 1, ..., p и j = 1, ..., k выполняется условие

bij,τ 6= 0, τ = min(0, ..., r),

где Bτ = {bij,τ}. Другими словами выберем такие элементы вектора управляющих воздей-

ствий, которые для данного прогнозируемого состояния в момент времени t являются суще-

ственными, имеют ненулевые коэффициенты. При этом необходимо учитывать, что управля-

ющее воздействие было последним по времени относительно состояния объекта управления.

Например, в таблице 26 эти ненулевые коэффициенты c12 и c43 выделены. Также рассмот-

рим в качестве примера влияние управляемых переменных gt и tr на вектор y состояния

объекта управления. Для этого используем коэффициенты, описанные в табл. 26. На рис. 96

показано прямое и косвенное влияние управляющего воздействия, выраженное значениями

коэффициентов c.

Подставляя в выражение (220) значения векторов фазовых траекторий (yt0−1, ...,yt0−r),

(zt0−1, ..., zt0−r) и (ut0−1, ...,ut0−r) за исключением элементов вектора ut и упрощая это выра-

жение, получаем

yt = Grut + ht,r, (221)
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Рис. 96. Связи между управляемыми переменными и переменными состояния.

где Gr ∈ Rp×k — новая матрица коэффициентов для управляемых переменных ut, значение

которой вычисляется для заданного r и ht,r ∈ Rm — вектор, вычисляемый для заданного

момента времени по известным значениям фазовых траекторий.

Уравнение обратной задачи

ut = G+
r (yt − ht,r) (222)

получается путем псевдообращения оператора G. Так как G ∈ Rm×p, то псевдообратная

матрица G+ ∈ Rp×m при выполнении условия G+G = Ip. Отметим, что полученная модель

является эконометрической по определению, см. c. 612 в [18], так как для решения обрат-

ной задачи необходимо с помощью измеряемых данных настраивать модель управления в

каждый момент времени.

Для псевдообращения используется сингулярное разложение матрицы G = WΛVT. Так

как W и V являются ортогональными матрицами, а Λ — диагональная матрица, то спра-

ведливо равенство G+ = VTΛ−1W, причем G+G = VΛ−1WTWΛVT = Ik, см. [70].

Задача управления в данной работе ставится следующим образом. Требуется подобрать

такую последовательность управляющих воздействий (ut1 , ...,utn), при ограничениях на

управление ut ∈ ∆ut, которая бы при некотором заданном сценарии внешних воздействий

обеспечивала бы через nшагов состояние ȳtn ∈ ∆utn . В рамках данной задачи определим две:

задачу наискорейшего приближения к целевому состоянию и задачу оптимального управ-

ления.

Задача наискорейшего приближения не является оптимальной в том смысле, что для ее

решения не назначается функция общей стоимости управления; требуется подобрать такие

векторы управления (ut0 , ...,utn) при ограничениях ut ∈ ∆ut, которые бы минимизировали

расстояние между целевым вектором ȳtn и вектором текущего состояния yt на каждом шаге.

Для этого на каждом шаге, начиная с t0, отыскивается такое новое состояние yt+1 =

αȳtn + (1− α)yt объекта управления, что

α = arg min
ut+1∈∆ut+1

||ȳtn − yt+1||2,

где параметр α ∈ [0, 1]. Данный алгоритм стремится достичь заданное состояние «любой

ценой», независимо от характера заданных внешних воздействий (zt1 , ..., ztn).



256

В задаче оптимального управления, как и в предыдущей, заданы сценарий внешних

воздействий (zt1 , ..., ztn), ограничения ∆ut на управляющие воздействия ut и целевой век-

тор ȳn. Требуется найти такую последовательность векторов (ut1 , ...,utn), при ограничениях

ut ∈ ∆ut, которая приводила бы объект управления из начального состояния yt0 в целевое

состояние ȳtn за n шагов при минимальной стоимости управления F (ut1 , ...,utn) → min.

В основу процедуры оптимизации мы положим принцип оптимальности Р. Беллмана: лю-

бое оптимальное управление может быть образовано только оптимальными управляющими

воздействиями на каждом шаге. Иначе, при любом состоянии системы перед очередным ша-

гом необходимо выбирать управление так, чтобы стоимость управления на данном шаге и

стоимость управления на всех последующих шагах была минимальной.

Для решения задачи используем теорему оптимальности Л. Миттена. Приведем ее в при-

нятых нами обозначениях.

Определение 22. Функция F строго разложима, если F представима в виде

F (u1,u2) = f1
(
u1, f2(u2)

)

и если f1 — монотонная функция по своему второму аргументу. Общий класс разложимых

функций образован функциями вида

F (u1, ..,un) = f1(u1) ◦ f2(u2) ◦ ... ◦ fn(un).

Теорема 18. Пусть F — вещественная функция от u1 и u2. Если F разложима и

F (u1,u2) = f1
(
u1, f2(u2)

)
, то тогда

min
u1,u2

F (u1,u2) = min
u1

(

f1

[

u1,min
u2

(f2(u2))

])

.

Для упрощения индексных обозначений будем считать, что начальное состояние объекта

управления t0 = 0, а конечное состояние — tn = n Объект управления в момент времени t

описывается вектором yt. В моменты времени t1, ..., tn к объекту применяются управляющие

воздействия u1, ...,un. Поведение объекта будем описывать функциями перехода h1, ..., hn, где

для t = 1, ..., n вектор yt = ht(ut,yt−1) есть результат применения к объекту управляющего

воздействия ut. В данном случае функция перехода ht соответствует модели yt = Gt,rut+ht,r,

где ht,r зависит от yt−1. Каждому управляющему воздействию ut соответствует стоимость

ft = f(ut,yt−1).

Из состояния y0 в момент времени t0 мы хотим привести объект управления в целевую

область ∆ȳn ∋ ȳn = g(u1, ...,un) минимизируя при этом полную стоимость

F ∗ = min
u1∈∆u1,...,un∈∆un

F (u1, ...,un).

Для множества управлений {u1, ...,un} конечное состояние системы g(u1, ...,un) опреде-

ляется равенствами

y1 = h1(u1,y0),

· · · · · · · · · · · · · · ·
yn = hn(un,yn−1),

yn = g(u1, ...,un).
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Полная стоимость управления равна F (u1, ...,un) и определяется соотношением

F (u1, ...,un) = f1(u1,y0) + f2(u2,y1) + ... + fn(un,yn−1).

В нашем случае функция полной стоимости F является аддитивной и очевидным образом

строго разложима, что дает возможность применить к задаче алгоритм динамического про-

граммирования [96].

Алгоритм нахождения оптимального управления заключается в следующем. Под дей-

ствием управления ut объект принимает состояние yt = ht(ut,yt−1) = Grut + ht,r, причем

стоимость управления на каждом шаге определяется как f(ut,yt−1).

Рис. 97. Прогноз изменения состояния объекта при оптимальном управлении.

Рекуррентное уравнение динамического программирования выражает стоимость Ft(y)

условного оптимального управления начиная с t-го шага до конца через уже известную функ-

цию Ft+1(y):

Ft(y) = min
ut∈∆ut

[f(ut,yt−1) + Ft+1(ht(ut,yt−1))].

Этой стоимости соответствует условное оптимальное управление ut на шаге t.

Далее производится условная оптимизация последнего шага n для множества состояний

yn−1 таких, что yn = h(un,yn−1) при un ∈ ∆un и вычисляется условная стоимость

Fn(yt) = min
un∈∆un

f(un,yn−1)

и находится оптимальное управление un.

После этого производится условная оптимизация для всех t, n − 1 > t > 0. Так как

начальное состояние y0 известно, то искомая величина F ∗ = F (u1, ...,un) = F1(y0).

Из вышеописанной процедуры оптимизации следует, что целевое множество множе-

ство ∆y0 достижимо, если найдутся такие векторы y1, ...,yn состояния объекта, что для

всех t = 1, ..., n существует управление ut = G+
t,r(yt − ht,r), лежащее в ∆ut.
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Рис. 98. Прогноз изменения состояния объекта при максимальных затратах управления.

Приведем пример нахождения оптимального управления в рамках рассматриваемой эко-

нометрической модели. На рисунках 98 и 97 показаны результаты ретроспективного опти-

мального управления на восемь кварталов. Черной линией обозначены исходные данные,

а красной — полученные в результате оптимизации и моделирования. Функция стоимости

управления назначена как линейная комбинация разности последующих во времени векто-

ров управляющего воздействия, то есть учтены последовательные изменения переменных gt

и tr. На верхних четырех графиках каждого рисунка показаны значения переменных состо-

яния [x, n, m, co]T, отложенные по осям ординат. На нижних двух графиках каждого рисунка

показаны значения переменных управления. Значения всех переменных показаны в унифи-

цированной шкале. По осям абсцисс всех графиков отложено время в кварталах.

Рис. 99. Изменение интегрального индикатора состояния экономики страны.

На рис. 97 показано изменение индикатора q состояния экономики. Черная линия пока-

зывает фактическое значения индикатора за исследуемый период времени. Красная линия

показывает значение индикатора при оптимальном управлении.
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В данной работе на сквозном тестовом примере показаны определение элементов систе-

мы. Также показаны две основные функции системы поддержки принятия решений: прогноз

состояния объекта управления и нахождения оптимальных управляющих воздействий. По-

казано, что существует множество различных траекторий {yt1 , ...,ytn}, которые позволяют

достичь целевое состояние объекта управления ȳtn . Стоимость управления при выборе тра-

ектории можно оптимизировать. Не всегда максимальная стоимость управления приводит к

оптимальному результату.
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Заключение

Решены следующие задачи.

1. Исследована cвязь между пространством данных и пространством параметров моделей.

Результаты опубликованы а работах, посвященных связанному байесовскому выводу.

2. Исследована связь между целевой функцией и распределением параметров модели.

При этом использованы методы тестирования статистических гипотез.

3. Исследованы методы выбора из счетного или континуального множества линейных,

полиномиальных, криволинейных и обобщенно-линейных моделей. Методы выбора мо-

делей определяются классом рассматриваемых моделей. При этом выбор производится

из конечного числа моделей.

4. Развит метод порождения моделей, который заключается в последовательной моди-

фикации элементов суперпозиций. Исследованы и описаны топологические свойства

пространства параметров моделей. На основании этого исследования предложен метод

последовательного порождения некоторых классов нелинейных моделей.

5. Исследована проблема порождения топологически изоморфных моделей с различной

структурой суперпозиции. Сформулирован набор ограничений, которые требуется на-

ложить на порождаемое множество моделей для исключения топологически изоморф-

ных моделей.

6. Развиты и предложены новые методы оценки гиперпараметров моделей. В частности,

исследована связь между методом оптимального прореживания, методом наименьших

углов и аппроксимацией Лапласа для пространства параметров. Указаны классы мо-

делей, к которым применимы предложенные методы оценки гиперпараметров.

Получены следующие научные результаты.

1. Метод оценки гиперпараметров в связанном байесовском выводе обобщен на случай мно-

гомерного распределения параметров моделей, описываемого ковариационной матрицей.

Новизна заключается в том, что обобщенный метод может быть использован для оценки

информативности элементов широкого класса нелинейных моделей.

2. Выполнена работа по сравнению различных алгоритмов порождения и выбора линейных

регрессионных моделей. Цель данной работы – изучение способов нахождения глобального

минимума суммы квадратов невязок при последовательном добавлении элементов модели.

Основной результат работы – получен новый эвристический алгоритм выбора линейной

модели на основе ранее предложенного метода наименьших углов. Этот алгоритм имеет

большую устойчивость к данным с множественной корреляцией признаков.

3. Исследованы свойства метода наименьших углов в задачах классификации. Для этого

функция распределения зависимой переменной считается бимодальной. Для решения за-

дач классификации с множественной корреляцией признаков предлагается использовать



261

иерархические логистические регрессионные модели. Новизна заключается в том, что вы-

бор оптимальной модели выполняется на каждом уровне иерархии отдельно. Результаты

показали, что качество классификации с помощью этого алгоритма превосходит качество

многих ранее предложенных алгоритмов на стандартных тестах с использованием алго-

ритмов скользящего контроля.

4. Исследованы ранговые регрессионные модели. В частности, разработан новый метод со-

гласования экспертных оценок при построении интегральных индикаторов в ранговых

шкалах. Исследованы свойства регрессионных моделей, параметры и зависимые пере-

менные которых принадлежат конусам. Исследованы способы сравнения и выбора таких

моделей. Предложенный метод использован для построения интегрального индикатора

воздействия тепловых электростанций на окружающую среду.

5. Разработаны способы оценки гиперпараметров для основных классов моделей. Резуль-

татом этого исследования является методология создания оптимизационных алгоритмов,

итеративно вычисляющих параметры и гиперпараметры моделей. В частности, рассмотре-

ны линейные модели, обобщенные линейные модели, криволинейные модели с нелинейны-

ми параметрами базовых функций, полилинейные модели, одно и двухслойные нейронные

сети, функции радиального базиса и существенно нелинейные модели.

6. Исследована взаимосвязь метода наименьших углов, оптимального прореживания и свя-

занного байесовского вывода в задачах выбора нелинейных и обобщенно-линейных моде-

лей. Результатом исследования является обоснование использования алгоритмов аппрок-

симации целевой функции в задачах анализа гиперпараметров.

7. Созданы базовые алгоритмы порождения оптимальных нелинейных регрессионных моде-

лей: алгоритм обобщенного индуктивного порождения произвольных суперпозиций нели-

нейных параметрических функций и алгоритм порождения линейных и полиномиальных

суперпозиций нелинейных параметрических функций.

8. Созданы алгоритмы выбора регрессионных моделей из индуктивно заданного множества:

комбинаторный алгоритм перебора моделей ограниченной сложности, многорядный алго-

ритм выбора наиболее информативных мономов полинома Колмогорова-Габора, алгоритм

генетического выбора наиболее информативных мономов и генетический оптимизацион-

ный алгоритм выбора моделей, представленных произвольными суперпозициями нелиней-

ных функций.

9. Разработана система алгоритмов поиска оптимальных моделей для решения задач нели-

нейной регрессии и получения адекватных устойчивых регрессионных моделей. В каче-

стве элементов, порождающих множество моделей, был использован набор аналитических

функций. Модели были идентифицированы по ряду тестовых и реальных обучающих

выборок, выполнен анализ адекватности этих моделей. Параметры моделей оцениваются

с помощью квазиньютоновских методов оптимизации. Для поиска моделей используются

алгоритмы стохастической оптимизации.
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10. Показано, что поиск моделей в неявно заданном множестве возможно выполнять путем

анализа значений гиперпараметров, поставленных в соответствие элементам моделей.

Планируется продолжение исследований и развитие полученных результатов.

1. Метод оценки гиперпараметров в связанном байесовском выводе будет обобщен на слу-

чай многомерного распределения параметров моделей, описываемого ковариационной

матрицей. Новизна заключается в том, что обобщенный метод может быть использован

для оценки информативности элементов широкого класса нелинейных моделей.

2. Будет выполнена работа по сравнению различных алгоритмов порождения и выбора ли-

нейных регрессионных моделей. Цель данной работы — изучение способов нахождения

глобального минимума суммы квадратов невязок при последовательном добавлении

элементов модели. Ожидаемый результат работы — получение нового эвристического

алгоритма выбора линейной модели на основе ранее предложенного метода наименьших

углов. Этот алгоритм должен иметь большую устойчивость к данным с множественной

корреляцией признаков.

3. Предполагается исследовать свойства алгоритма наименьших углов в задачах класси-

фикации. Для этого функция распределения зависимой переменной будет считаться

бимодальной. Для решения задач классификации с множественной корреляцией при-

знаков предлагается использовать иерархические логистические регрессионные моде-

ли. Новизна заключается в том, что выбор оптимальной модели будет выполняться

на каждом уровне иерархии отдельно. Предварительные исследования показали, что

качество классификации с помощью этого алгоритма превосходит качество многих ра-

нее предложенных алгоритмов на стандартных тестах с использованием алгоритмов

скользящего контроля.

4. Будут развиты работы в области ранговой регрессии. В частности, будет разработан

новый метод согласования экспертных оценок при построении интегральных индика-

торов в ранговых шкалах. Будут исследованы свойства регрессионных моделей, па-

раметры и зависимые переменные которых принадлежат конусам. Будут исследованы

способы сравнения и выбора таких моделей. Предложенный метод будет использован

для построения интегрального индикатора воздействия тепловых электростанций на

окружающую среду. Ожидается обсуждение результатов использования этого метода

на Энергетическом форуме республики Хорватия.

5. Будут исследованы способы оценки гиперпараметров для основных классов моделей.

Результатом этого исследования станет методология создания оптимизационных ал-

горитмов, итеративно вычисляющих параметры и гиперпараметры моделей. В част-

ности, будут рассмотрены линейные модели, обобщенные линейные модели, криволи-

нейные модели с нелинейными параметрами базовых функций, полилинейные моде-

ли, одно и двухслойные нейронные сети, функции радиального базиса и существенно-

нелинейные модели.
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6. Будет исследована взаимосвязь алгоритмов наименьших углов, оптимального прорежи-

вания и связанного байесовского вывода в задачах выбора нелинейных и обобщенных

линейных моделей. Результатом исследования станет обоснование использования алго-

ритмов аппроксимации целевой функции в задачах анализа гиперпараметров.
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Список основных обозначений

Матрицы обозначены заглавными буквами, векторы — полужирными прописными бук-

вами, множества — каллиграфическими буквами.

R — множество действительных чисел

N — множество натуральных чисел

E — математическое ожидание случайной величины

D — дисперсия случайной величины

x — набор свободных переменных, многомерная случайная величина x = [x1, ..., xj , ..., xn]
T ∈

Rn

y — вектор зависимых переменных, y = [y1, ..., yi, ..., ym]
T ∈ Rm

xi — i-й объект выборки, реализация многомерной случайной величины x, xi ∈ Rn

χj — реализации j-й свободной переменной, признак, χj = [x1j , ..., xmj ]
T ∈ Rm

X — матрица плана, X = [xT

1 , ...,x
T

m]
T, X = [χ1, ...,χn]

D — выборка, множество пар {(xi, yi)| i = 1, ..., m}, также D = (X,y)

I — множество индексов элементов выборки (объектов)

B — множество индексов опорных объектов, B ⊂ I
J — множество индексов свободных переменных (признаков)

A — множество индексов активных признаков, A ⊂ J
XA — подмножество признаков, заданное индексным множеством A
m — число зависимых переменных, размерность пространства зависимых переменных, m =

|I|
n — число свободных переменных, размерность пространства свободной переменной, n = |J |
f — регрессионная модель, f = f(w,x), по определению f : (w,x) 7→ y

f — вектор значений регрессионной модели, f = [f(w,x1), ..., f(w,xm)]
T,

вектор-функция f(w,X) 7→ y

w — вектор параметров w = [w1, ..., wn]
T модели

ε — многомерная случайная величина ε = [ε1, ..., εm]
T, вектор регрессионных остатков ε̂

σ2
ε — дисперсия элементов многомерной случайной величины ε, описываемых ковариацион-

ной матрицей σ2
εI

A−1 — ковариационная матрица многомерной случайной величины w

B−1 — ковариационная матрица многомерной случайной величины y

J — матрица Якоби функции f с элементами Jij =
[
∂f(w,xi)
∂wj

]

, i ∈ I, j ∈ J
S — функция ошибки, S = S(w), полный вариант S = S(w|D, f) при заданной выборке D и

фиксированной модели f(w,x)

∇S — градиент функции ошибки S(w) в пространстве параметров W ∋ w, ∇S(w) =
[
∂S(w)
∂wj

]

, j ∈
J
H — матрица Гессе функции f с элементами Hij =

[
∂2S(w)
∂wj∂wk

]

, j, k ∈ J , H = ∇2S(w)

g — порождающая функция, g = g(w, ·)
G — множество порождающих функций, G = {g}
F — множество индкутивно-порожденных регрессионных моделей, F = {f}
[·] — элементы матрицы или вектора, например: матрица X = [xij ], вектор y = [y1, ..., ym]

T
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‖ · ‖ — евклидова норма вектора ‖ · ‖2, если нижним индексом не указано иное

〈·, ·〉 — скалярное произведение двух векторов

Замечания. Число элементов вектора параметров w может не совпадать с числом элемен-

тов свободной переменной x в существенно нелинейных регрессионных моделях.

Использование при анализе случайной величины y, обозначений ее оценки ŷ и ее факти-

ческого значения y необязательно, так как оценка многомерной случайной величины y есть

значение функции регрессии, E(y) = ŷ = f = f(w0,X), а фактическое значение y использу-

ется в тексте только совместно с фактическим значением X случайной переменной x. Эта

пара является выборкой и обозначается D = (X,y). При этом считается, что речь идет о

некоторой измеряемой реализации двух этих величин.
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