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Optimization problems have been successfully applied to mathematical modeling mainly be-
cause there is a developed theory for these problems. The theory has several main approaches
involving parametrization concepts (e.g., proximal method and penalty function method), li-
nearization (e.g., gradient method), and quadratic approximation (e.g., Newton method).
Under special conditions these methods and their combinations always converge to a solution
of a singular optimization problem.

The situation is quite di�erent when we deal with equilibrium problems, where none of these
methods nor modi�cations of them are suitable. A simple equilibrium with a saddle point is a
su�cient example of this. Let us consider the search for a saddle point of the function L(x, p) =
= x · p. The saddle point of this function is at the origin (0, 0) and satis�es the inequality: 0 · p ≤
≤ 0 · 0 ≤ x · 0 for all x ∈ R1 and p ∈ R1. The saddle gradient method in one variable is falling
and the other is ascending and has the form

dx

dt
= −αp,

dp

dt
= αx, α > 0, x(t0) = x0, p(t0) = p0.

(1)

Hence, xdx + pdp = 0 or x2 + p2 = r2, i.e., the method trajectory does not converge to the origin
(the saddle point). The method does not converge because the operator F (x, p) = (−p, x)> is not
potential2. A similar example can be easily given for the proximal method as well. It is di�cult
to apply the main optimization approaches to the calculation of even the simplest equilibria.

Evidently, these di�culties can be overcome in di�erent ways. In this paper a method in
which the calculation is controlled by additive feedbacks is considered. This approach allows us to
calculate the simplest equilibria and saddle points. Here, we only consider the proximal processes.

Necessary Conditions in the Form of a Proximal Operator. Let us consider how to
calculate a saddle point of a convex-concave singular function, i.e., of the point x∗, p∗ that is the
solution of the inequality

L(x∗, p) ≤ L(x∗, p∗) ≤ L(x, p∗) (2)
for all x ∈ Q ⊆ Rn and p ∈ P ⊆ Rm, where L(x, p) is a function convex with respect to x and
concave with respect to p. (The term singular function means that the function is not strongly
convex with respect to one variable and strongly concave with respect to another.) The sets Q
and P are convex and closed.

An important example of a singular saddle function is the Lagrange function for a convex
programming problem. Further, we assume that the function L(x, p) is not generally di�eren-
tiable. Di�erentiability is too strong for many practical applications. For example, in many
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2Although the operator F1(x, p) = (p, x)> is potential [1, p.61], F1(x, p) is the gradient for L(x, p).
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applied spheres, especially in mathematical economics, functions like f(x) = max{〈ai, x〉 − bi,
i = 1, 2, . . . , m}, are used. These functions are convex but not di�erentiable and gradient me-
thods cannot be used to optimize them. If the function is not di�erentiable the necessary condition
for L(x, p) to be a minimum cannot be written in terms of gradient because one does not exist.

In this situation the necessary conditions can be readily formulated in terms of a proximal
(from the Latin proximal) operator. The following simple example is an illustration. Let f(x)
be a convex function, x∗ be a �xed point, and Q be a convex closed set from Rn, then if x∗

is the minimum of f(x) on Q then it will also be the minimum for the regularized function
αf(x) +

1

2
|x− x∗|2, α > 0, i.e.,

x∗ = argmin
{

1

2
|z − x∗|2 + αf(z) : z ∈ Q

}
. (3)

When the apex of the paraboloid |x−x∗|2 does not coincide with the minimum of f(x) on Q then
the proximal operator makes a step (similar to a gradient one) in the direction of the minimum
of f(x) on Q.

Let us return to (2) and calculate the saddle point assuming that L(x, p) is a nondi�erentiable
function. The necessary conditions are stated in the form of a proximal operator. They are

x∗ = argmin
{

1

2
|z − x∗|2 + αL(z, p∗) : z ∈ Q

}
,

p∗ = argmax
{
−1

2
|y − p∗|2 + αL(x∗, y) : y ∈ P

}
.

(4)

The system in (4) is equivalent to (2). Hence, from (4), x∗, p∗ is a stationary point of the proximal
transformation.

If the function L(x, p) is de�ned for all x ∈ Q and p ≥ 0 and is the Lagrange function
L(x, p) = f(x) + 〈p, g(x)〉 for the convex programming problem

x∗ = argmin{f(x) : g(x) ≤ 0, x ∈ Q}, (5)

then, because L(x, p) is linear with respect to p, the second equation in (4) can be reduced.
Let us take this equation in the form

p∗ = argmax
{
−1

2
|y − (p∗ + αg(x∗))|2 : y ≥ 0

}
. (6)

Since the problem in (6) is to determine the projection operator π+(. . .) of a vector on a positive
orthant, system (4) can be written in the form

x∗ = argmin
{

1

2
|z − x∗|2 + αL(z, p∗) : z ∈ Q

}
,

p∗ = π+(p∗ + αg(x∗)).
(7)

In the general case, the problem of searching for a saddle point of the function L(x, y) can be
always reformulated as a zero-sum two-person game. The point x∗, p∗ that satis�es the system

x∗ ∈ argmin{L(z, p∗) : z ∈ Q},
p∗ ∈ argmin{−L(x∗, y) : y ∈ P} (8)

is called the game solution or Nash equilibrium. The game de�ned by (8) can be associated with
a normalized function such as

Φ(w, v) = L(z, p)− L(x, y), (9)
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where w = (z, y), v = (x, p). This function is already de�ned in the space of variables z, y, x,
p, i.e., in the space with twice the dimensions of the initial space. Since the function Φ(w, v) is
separable by the variables z and y and the set Ω = Q × P has a block structure, the problem
de�ned by

v∗ = argmin{Φ(w, v∗) : w ∈ Ω, v ∈ Ω} (10)
is equivalent to the problem de�ned in (8) and the sets of solutions for both problems coincide.
When the variation set of the variables w and v is not the Cartesian product Ω × Ω, the set of
normalized solutions of (10) is only a subset of the solutions of (8).

The necessary condition for the problem in (10) can be given in a form similar to (3), viz.,

v∗ = argmin
{

1

2
|w − v∗|2 + αΦ(w, v∗) : w ∈ Ω

}
, (11)

i.e. if v∗ is the minimum of Φ(w, v∗) on the set w ∈ Ω, then v∗ will remain the solution of (11).
This formulation of the problem in (11) has the same form as that of the problem in (4) and so
an approach common for such problems can be developed.

Proximal Processes Controlled by a Residual and a Derivative. Let us turn to the
proximal approach. The residual, i.e., the di�erence between the left-hand and right-hand sides
of (4) is zero at x∗, p∗ and is nonzero at an arbitrary point x, p. It speci�es the transformation of
the set X × P in Rn × Rm. The image of this transformation can be considered as a vector �eld
with the stationary point x∗, p∗. Given the vector �eld, we can formulate the problem of �nding
the trajectory so that its tangent coincides with the direction of the �eld at this point. Formally,
this problem can be described by a system of di�erential equations in the following form

dx

dt
= argmin

{
1

2
|z − x|2 + αL(z, p) : z ∈ Q

}
− x, x(t0) = x0,

dp

dt
= argmax

{
−1

2
|y − p|2 + αL(x, y) : y ∈ P

}
− p, p(t0) = p0.

(12)

Similar conclusions about the residual produced by system (11) give us the di�erential equation
in the form

dv

dt
= argmin

{
1

2
|w − v|2 + αΦ(w, v) : w ∈ Q

}
− v, v ∈ Ω, v(t0) = v0. (13)

If the function g(x) ≡ 0 in (5) then the proximal method (12) for the optimization of f(x) on
Q takes the form

dx

dt
= argmin

{
1

2
|z − x|2 + αf(z) : z ∈ Q

}
− x, x(t0) = x0.

The asymptotic stability of this process is investigated in [2].
The proximal operator on the right-hand sides of (12) and (13) is a non-expanding operator

and, hence, a unique trajectory x(t), p(t), or v(t) exists for all x0, p0, or v0 and for all t ≥ t0.
The trajectories of (12) and (13) do not, in general, converge to the equilibrium (x∗, p∗) = v∗.

If in (12) we have the function L(x, p) = x · p and Q = R1 and P = R1 then this process turns
into (1), which we already considered in the introduction. The equilibrium is then a center and,
hence, is asymptotically unstable, although it is absolutely stable. The question is whether the
phase-plane portrait of a dynamic system can be changed so that the equilibrium can be changed
from an asymptotically unstable center to a stable node?

The phase-plane portrait of the dynamic system can be changed by varying either the pa-
rameters or feedbacks. The �rst way changes the phase-plane portrait but the coordinates of the
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equilibrium must be calculated and, hence, is unsuitable for our purposes1. The second technique
(control theory) is to vary the feedbacks in some class of functions and yields phase-plane portraits
with the necessary property that the trajectories converge to equilibria whose coordinates do not
change after the phase-plane portrait changes.

The equilibrium is kept stationary in the phase-plane portrait by special features of the feed-
backs. In the general case, feedbacks are functions that depend on the phase coordinates and
system velocities, i.e., u = u(v, v̇), where v̇ = dv/dt. At equilibrium points the feedbacks are zero,
i.e., u = u(v∗, v̇∗) = 0, where v̇(∞) = v̇∗.

The selection of the correct feedback should ensure the dynamic systems trajectories converge
to the equilibrium. Let us introduce the additive control u = u(w, ẇ) in (13), i.e.,

dv

dt
= argmin

{
1

2
|w − v|2 + αΦ(w, v + u) : w ∈ Ω

}
− v, v ∈ Ω, v(t0) = v0, (14)

and let us formulate the control problem for this system. For some feedbacks u = u(w, ẇ) the
control should be selected as the state function of the dynamic system (14). In other words, a
control algorithm should be constructed which transforms (14) from an arbitrary initial state v0

to an equilibrium v∗, in general, in in�nite time.
The feedbacks u = u(w, ẇ) can be interpreted either as the location of the rudders of the object,

which travels along the trajectory in question or the energy vector required for the rudders to be
kept in a given state. At equilibrium, the object is stationary and its velocity is zero, hence, the
energy consumption at equilibrium is zero: u = u(v∗, v̇∗) = 0. This looks like a single requirement
on the control that follows from the situation. Other than that the controls are arbitrary.

The simplest control is [3]
u = v̇ (15)

and expresses the simple statement that the energy required to control the motion is proportional
to the vector of the trajectory velocity. If the system in (14) is closed by (15), i.e.,

dv

dt
= argmin

{
1

2
|w − v|2 + αΦ(w, v + v̇) : w ∈ Ω

}
− v, v ∈ Ω, v(t0) = v0, (16)

then an implicit di�erential system which is not resolved with respect to the derivative will appear.
This can lead to problems when numerically integrating it. For example, the iteration analog of
(16) is a system of nonlinear equations which are not resolved with respect to the variables vn+1,
viz.,

vn+1 = argmin
{

1

2
|w − vn|2 + αΦ(w, vn+1) : w ∈ Ω

}
. (17)

The system in (17) is an inverse optimization problem and is considered in [4]. Thus, feedbacks
that give explicit closed-loop di�erential systems are interesting. The control given by the residual

u = argmin
{

1

2
|w − v|2 + αΦ(w, v) : w ∈ Ω

}
− v, v ∈ Ω, (18)

is one such feedback. When (14) is closed with the feedback in (18) we obtain the di�erential
system

dv

dt
= argmin

{
1

2
|w − v|2 + αΦ(w, ū) : w ∈ Ω

}
− v, v ∈ Ω, v(t0) = v0,

where
ū = argmin

{
1

2
|w − v|2 + αΦ(w, v) : w ∈ Ω

}
. (19)

1This area is known as catastrophe theory.

4



The iteration analog of (19) is quite important for us [5], viz.,

ūn = argmin
{

1

2
|w − vn|2 + αΦ(w, vn) : w ∈ Ω

}
,

vn+1 = argmin
{

1

2
|w − ūn|2 + αΦ(w, ūn) : w ∈ Ω

}
.

(20)

It is evident from (20) that it is an explicit iteration scheme with either a preliminary or predicted
step after which the prediction ūn at the �rst and next vn+1 iteration are calculated. The general
principles for controlling dynamic systems by feedback are considered in [6]. The trajectories v(t)
produced by (16) and (19) do not converge to the equilibrium for all functions Φ(w, v), but they
do converge for functions which satisfy the following two conditions:

Φ(v, v) = 0 for all v ∈ Ω, (21)
Φ(w, v∗) + Φ(v∗, w) = 0 for all w ∈ Ω. (22)

We shall show that these conditions are always satis�ed for a normalized function of a zero-sum
two-person game. The �rst condition means that on the diagonal of the square, that is at w = v,
we have the function Φ(w, v) = 0, which gives this class of games between n people its name of
zero-sum games. Obviously, condition (21) for the function Φ(w, v) = L(z, p) − L(x, y), where
w = (z, y), v = (x, p), is satis�ed because at w = v we have Φ(v, v) = L(x, p)− L(x, p) = 0.

The validity of the second condition can also be seen. Let v = v∗ then Φ(w, v∗) = L(z, p∗)−
−L(x∗, y). Since the variation sets of the variables w ∈ Ω and v ∈ Ω are the same, we assume
w = v∗ and v = w in Φ(v, w) whence Φ(v∗, w) = L(x∗, y)−L(z, p∗). Hence, Φ(w, v∗)+Φ(v∗, w) =
= L(z, p∗)−L(x∗, y)+L(x∗, y)−L(z, p∗) = 0. This is true if the domain of the function Φ(w, v) is
a square Ω×Ω, but is also true when the domain is a convex closed set symmetrical with respect
to the diagonal of the square (w = v), i.e., the set includes the points v0, w0 and w0, v0.

Theorem 1. If the set of solutions to (10) is not empty, the function Φ(w, v) de�ned on the
convex closed set Ω is convex with respect to the variable w and satis�es (21) and (22), then the
trajectory v(t) of the process de�ned by (14) and (15), or equivalently (16) for any α > 0, converges
monotonously with respect to the norm to an equilibrium, i.e., v(t) ⇒ v∗ ∈ Ω as t ⇒∞.

The proof is given in Appendix 1. The iterative version of (17) converges under the same
conditions.

In order to prove the convergence of (14), (18), or (19) the function Φ(w, v) must satisfy
additional Lipschitz conditions for a function of two variables. They have the form

|(Φ(w + h, v + k)− Φ(w, v + k))− (Φ(w + h, v)− Φ(w, v))| ≤ |Φ| |h| |k|. (23)

The inequality is satis�ed for all w and w +h, v and v +k from Ω, and |Φ| is a Lipschitz constant.
An inequality symmetric with (23) is also satis�ed, i.e.,

|(Φ(w + h, v + k)− Φ(w + h, v))− (Φ(w, v + k)− Φ(w, v))| ≤ |Φ| |h| |k| (24)

for all w and w + h, v and v + k from Ω, and |Φ| is a Lipschitz constant which di�ers, in general,
from the constant in (23). The classes of functions of two variables which satisfy the Lipschitz
conditions like (23) or (24) are not empty.

Lemma 1 [5]. If Φ(w, v) is a di�erentiable function whose partial gradient with respect to
the variable w satis�es the Lipschitz condition with the constant |Φ| then (23) is satis�ed for all
w and w + h and v and v + k from Ω.

This lemma is proved in Appendix 1. Let us formulate a theorem concerning the convergence
of (19).
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Theorem 2. If the solution set of (10) is not empty, the function Φ(w, v) de�ned on the convex
closed set Ω is convex with respect to the variable w and satis�es (21) and (22) and, besides, this
function satis�es (23), α < 1/(

√
2|Φ|), where |Φ| is the constant in (23), then the trajectory v(t)

of (14) and (18), or equivalently (19), converges to an equilibrium monotonously with respect to
the norm, i.e., v(t) ⇒ v∗ ∈ Ω as t ⇒∞.

Theorem 2 is proved in Appendix 2. The iterative process in (20) converges under the same
assumptions. When comparing (16) and (19) we see that the �rst one is implicit but has no limi-
tations on the parameter α while the second is explicit but there is a limitation on the parameter,
namely, α < 1/(

√
2|Φ|). So, how do we select the parameter α, at every time t or at every iteration

in a discrete process?
Proximal Processes with Mixed Control. We have considered control over di�erential

systems only by derivative or only by residual. Let us turn to mixed controls. We assume the
separability of the function Φ(w, v) = L(z, p)−L(x, y) with respect to the variables w = (z, y) and
v = (x, p) and also assume that the domain Ω×Ω has a block structure and so we can decompose
(14) and (18) into two distinct subsystems, i.e.,

dx

dt
= argmin

{
1

2
|z − x|2 + αL(z, p + u1) : z ∈ Q

}
− x, x(t0) = x0,

dp

dt
= argmax

{
−1

2
|y − p|2 + αL(x + u2, y) : y ∈ P

}
− p, p(t0) = p0,

(25)

where
u1 = argmax

{
−1

2
|y − p|2 + αL(x, y) : y ∈ P

}
− p,

u2 = argmin
{

1

2
|z − x|2 + αL(z, p) : z ∈ Q

}
− x.

(26)

This system, if controlled by residuals, is equivalent to the closed-loop system of (19) and Theo-
rem 2 states that it converges to the equilibrium. We noticed that control by derivatives leads to
implicit closed-loop systems, while control by residuals leads to systems with a nonconstructive
selection of the parameter α. Thus, controls in which closed-loop systems are intermediate are
interesting for us.

Let us consider mixed feedback in which, unlike in (26), the control over the variable p is by
a residual while over variable x it is by a derivative, i.e.,

u1 = argmax
{
−1

2
|y − p|2 + αL(x, y) : y ∈ P

}
− p, u2 = ẋ. (27)

After closing (25), using the controls in (27) we obtain the following system

dx

dt
= argmin

{
1

2
|z − x|2 + αL(z, p̄) : z ∈ Q

}
− x, x(t0) = x0,

dp

dt
= argmax

{
−1

2
|y − p|2 + αL(x + ẋ, y) : y ∈ P

}
− p, p(t0) = p0,

(28)

where
p̄ = argmax

{
−1

2
|y − p|2 + αL(x, y) : y ∈ P

}
. (29)

This system is explicit because the �rst equation is resolved with respect to the derivative ẋ,
which can be substituted into the right-hand side of the second equation. The explicit form of
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this equation is especially clear in its iterative form [7], i.e.,

p̄n = argmax
{
−1

2
|y − pn|2 + αL(xn, y) : y ∈ P

}
,

xn+1 = argmin
{

1

2
|z − xn|2 + αL(z, p̄n) : z ∈ Q

}
,

pn+1 = argmax
{
−1

2
|y − pn|2 + αL(xn+1, y) : y ∈ P

}
.

(30)

Here, the �rst step is a prediction. The prediction p̄n is used to calculate iteration xn+1 which, in
turn, is used to calculate the iteration pn+1. Comparing this process with (19) or (20) we can see
that the internal connections between the equations are signi�cant. The information obtained at
the n-th iteration is used to calculate the (n + 1)-th step of the other subprocess. Processes (28),
(29), and, respectively, (30) have a more complicated logical structure and are much simpler than
(25) and (26) in the sense of its bulky equations.

Theorem 3. If the solution set of (2) is not empty, the function L(x, p) de�ned on the convex
closed sets Q and P is convex-concave with respect to the variables x and p and, besides, this
function satis�es (23) with the constant |L|, and α < 1/|L|, then the trajectory x(t) and p(t) of
(28) and (29) converges to one of the saddle points monotonously with respect to the norm, i.e.,
x(t), p(t) ⇒ x∗, p∗ ∈ Q× P as t ⇒∞ for all x0 and p0.

Theorem 3 is proved in Appendix 3. The iteration process of (30) converges under the assump-
tions in Theorem 3.

Comparing (25) and (26) to (28) and (29), apart from evident fact that the second process is
considerably simpler than the �rst one, we should note that from Lemma 1 we have that estimation
of the constant |L| from (23) requires the existence of one partial derivative in process (28) and
(29) and two partial derivatives in (25) and (26).

If the function L(x, p) is the Lagrange function L(x, p) = f(x) + 〈p, g(x)〉 for the convex
programming problem

x∗ ∈ argmin{f(x) : g(x) ≤ 0, x ∈ Q}, (31)
then, because L(x, p) is linear with respect to the variable p or, which is the same, due to conditions
(7), di�erential system (28) and (29) takes on the simpler form

dx

dt
= argmin

{
1

2
|z − xn|2 + αL(z, p̄n) : z ∈ Q

}
− x, x(t0) = x0,

dp

dt
= π+(p + αg(x + ẋ))− p, p(t0) = p0,

(32)

p̄ = π+(p + αg(x)). (33)
Since the Lagrange function L(x, p) is linear in p then the constant |L| for (32) and (33) is |L| = |g|,
where |g| satis�es the condition |g(x1) − g(x2)| = |g| |x1 − x2| for all x1 and x2 from Q. If the
parameter α satis�es the condition α < 1/|g|, then under the conditions of Theorem 3 the process
in (32) and (33) will converge monotonously in the space of the variables x and p to the problem
solution.

Methods of Modi�ed Lagrange Functions. Methods using modi�ed Lagrange functions
in convex programming problems have become widely used during recent decades. Primarily this
is because they are e�ective when handling practical nonlinear programming problems. The theory
of these methods is given in su�cient detail elsewhere [8, p.356], [9], [10, p.252] and only iteration
processes were considered.

In this section we discuss the connection between the methods of modi�ed Lagrange functions
and proximal methods with control by derivative (14) and (15). With regard to the separability
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of the function Φ(w, v) and to the block structure of the limitations on w and v, we decompose
the closed-loop system (16) into

dx

dt
= argmin

{
1

2
|z − x|2 + αL(z, p + ṗ) : z ∈ Q

}
− x, x(t0) = x0,

dp

dt
= π+(p + αg(x + ẋ))− p, p(t0) = p0.

(34)

Since L(x, p) = f(x) + 〈p, g(x)〉 and ∇L(x, p) = ∇f(x) +∇g>(x)p the �rst di�erential equation
from (34) is written in the variational form

〈x + ẋ− x + α(∇f(x + ẋ) +∇g>(x + ẋ)(p + ṗ)), z − x− ẋ〉 ≥ 0 (35)

for all z ∈ Q. The term p + ṗ in this inequality is expressed from the second equation in (34),
then

〈x + ẋ− x + α(∇f(x + ẋ) +∇g>(x + ẋ)π+(p + αg(x + ẋ))), z − x− ẋ〉 ≥ 0 (36)
for all z ∈ Q. Note that the vector ∇f(x + ẋ) +∇g>(x + ẋ)π+(p + αg(x + ẋ)) in this inequality
is the gradient ∇Mx(x, p) with respect to the variable x of the modi�ed Lagrange function

M(x, p) = f(x) +
1

2α
|π+(p + αg(x))|2 − 1

2α
|p|2, (37)

calculated at x + ẋ, p. Thus, (36) can be rewritten as

〈x + ẋ− x + α(∇Mx(x + ẋ, p)), z − x− ẋ〉 ≥ 0 (38)

for all z ∈ Q. Since the function M(x, p) is convex with respect to z, this variational inequality
can be written as a di�erential equation which is the �rst in the following equation system

dx

dt
= argmin

{
1

2
|z − x|2 + αM(z, p) : z ∈ Q

}
− x, x(t0) = x0,

dp

dt
= π+(p + αg(x + ẋ))− p, p(t0) = p0.

(39)

Since the transition from (34) to (39) was by an equivalent transformation these systems are
also equivalent, i.e., they produce the same trajectory x(t), p(t). System (39) is a continuous
analog of the iteration method of the modi�ed Lagrange function. In order to con�rm this it is
su�cient to go from the continuous process to the iteration one by the following relationships:
x(t) → xn, p(t) → pn, dx/dt → xn+1 − xn, dp/dt → pn+1 − pn, i.e.,

xn+1 = argmin
{

1

2
|z − xn|2 + αM(z, pn) : z ∈ Q

}
,

pn+1 = π+(pn + αg(xn+1)).
(40)

Although the processes of (34) and (39) produce the same trajectory, they have a signi�cant
di�erence: �rstly, (34) is an implicit process while (39) is an explicit one, i.e., it is resolved with
respect to its derivatives, which assumes that the auxiliary subproblems are solved in di�erent
ways at every time moment t and at every iteration n. Secondly, (34) uses the Lagrange function
which conserves the block structure once the initial convex-programming problem gets one, while
(39) uses a modi�ed Lagrange function, which does not retain such a structure. Thirdly, these
two processes, in general, have di�erent sensitivity to the calculation errors.

Since (34) and (39) are equivalent, Theorem 1 guarantees the convergence of the modi�ed
Lagrange function method as well. However, we give a theorem about the convergence of the
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modi�ed Lagrange function method which is proved in Appendix 4 because the continuous method
of the modi�ed Lagrange function is valuable by itself.

Theorem 4. If the set of saddle points of the Lagrange function L(x, p) of a convex-program-
ming problem (2) is not empty, the functions f(x) and g(x) are convex and di�erentiable, Q is the
convex closed set, the parameter α > 0, then the trajectory x(t), p(t) of process (39) converges to
a saddle point monotonously with respect to the norm, i.e., x(t), p(t) ⇒ x∗, p∗ ∈ Q× P as t ⇒∞
for all x0, p0.

Appendix 1

This and the following theorems are proved using a useful inequality [2] which is satis�ed for
any convex function f(y), which need not be di�erentiable, i.e.,

1

2
|x∗ − x|2 + αf(x∗) ≤ 1

2
|y − x|2 + αf(y)− 1

2
|y − x∗|2 (A1.1)

for all y ∈ Ω at a �xed vector x, and x∗ is the minimum point for the function ϕ(y) =
1

2
|y− x|2+

+αf(y) on the convex closed set Ω.
Since the objective function on the right-hand side of (16) is in the form of the function ϕ(y),

we can rewrite (16) in the equivalent form (A1.1)

1

2
|v + v̇ − v|2 + αΦ(v + v̇, v + v̇) ≤ 1

2
|w − v|2 + αΦ(w, v + v̇)− 1

2
|v + v̇ − w|2 (A1.2)

for all w ∈ Ω. Problem (10) is also presented in the equivalent form of the variational inequality

Φ(v∗, v∗) ≤ Φ(w, v∗) for all w ∈ Ω. (A1.3)

Proof of Theorem 1. Let w = v∗ in (A1.2) and w = v + v̇ in (A1.3)

1

2
|v + v̇ − v|2 + αΦ(v + v̇, v + v̇) ≤ 1

2
|v∗ − v|2 + αΦ(v∗, v + v̇)− 1

2
|v + v̇ − v∗|2, (A1.4)

Φ(v∗, v∗) ≤ Φ(v + v̇, v∗). (A1.5)

We sum both inequalities

|v̇|2 + αΦ(v + v̇, v + v̇) + αΦ(v∗, v∗)− αΦ(v∗, v + v̇)− αΦ(v + v̇, v∗) + 〈v̇, v − v∗〉 ≤ 0, (A1.6)

hence, with regard to conditions (20) and (21), we have

1

2

d

dt
|v − v∗|2 + |v̇|2 ≤ 0. (A1.7)

Then, by integrating inequality (A1.7) from t0 to t

|v − v∗|2 + 2

t∫

t0

|v̇|2dτ ≤ |v0 − v∗|2, (A1.8)

where v0 = v(t0), we �nd that the trajectory |v(t)− v∗|2 ≤ |v0 − v∗|2 is bounded, and since v0 is
an arbitrary initial value we also have the absolute stability of a set of equilibrium points of the
system and the integral

t∫
t0

|v̇|2dτ < ∞ converges as t ⇒∞, too.
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Now, we prove the asymptotic stability of the set of equilibrium points. Assuming that ε > 0
exists, so that |v̇(t)| ≥ ε for all t ≥ t0, then we have a contradiction with integral convergence.
Hence, a subsequence of the time moments ti ⇒ ∞ such that |v̇(ti)| ⇒ 0 exists. Since v(t) is
limited, the element v′ exists such that v(ti) ⇒ v′ as ti ⇒∞.

Let us consider (A1.2) for all times ti ⇒∞ and, taking the limit, we get the limit inequality

Φ(v′, v′) ≤ Φ(w, v′) (A1.9)

for all w ∈ Ω. This inequality coincides with (A1.3) and, hence, v′ = v∗ ∈ Ω. Thus, any limit
point of the trajectory v(t) is a solution of the problem, and |v(t)− v∗|2 monotonously decreases.
Together these two facts mean that the trajectory v(t) can only have one limit point, i.e., v(t) ⇒ v∗

as t ⇒∞. The theorem is proved.
Proof of Lemma 1. On using the Lagrange relationship f(x + h)− f(x) =

1∫
0
〈∇f(x + th), h〉dt

and after making the following transformations

|(Φ(w + h, v + k)− Φ(x,w + k))− (Φ(x + h,w)− Φ(x,w))| =

=

∣∣∣∣∣∣

1∫

0

〈∇Φw(w + th, v + k), h〉dt−
1∫

0

〈∇Φw(w + th, v), h〉dt

∣∣∣∣∣∣
≤

≤
1∫

0

|〈∇Φw(w + th, v + k)−∇Φw(w + th, v), h〉|dt ≤

≤
1∫

0

|Φ| |k| |h|dt ≤ |Φ| |h| |k|,

the lemma is proved.
The inequality in (24) can be proved similarly. Inequalities (23) and (24) are generalizations in

terms of �nite di�erences of Lipschitz conditions for partial gradients ∇Φw(w, v) and ∇Φv(w, v)
of the function f(x,w). When using (23) and (24) to prove the convergence of various methods,
di�erentiability is not necessary for the saddle functions.

Appendix 2

Before proving Theorem 2, let us estimate the deviations of two vectors: u + v and ū. Both
equations in (19) are rewritten in the form of variational inequalities, viz.,

1

2
|v + v̇ − v|2 + αΦ(v + v̇, ū) ≤ 1

2
|w − v|2 + αΦ(w, ū)− 1

2
|v + v̇ − w|2 (A2.1)

for all w ∈ Ω and
1

2
|ū− v|2 + αΦ(ū, v) ≤ 1

2
|w − v|2 + αΦ(w, v)− 1

2
|w − ū|2 (A2.2)

for all w ∈ Ω. Let w = ū in (A2.1) and w = v + v̇ in (A2.2) and we add both inequalities, then,
given (23), we have

|v + v̇ − ū|2 ≤ α(Φ(ū, ū))− Φ(v + v̇, ū) + Φ(v + v̇, v)− (Φ(ū, v)) ≤ α|Φ||v + v̇ − ū| |v − ū|.
Hence,

|v + v̇ − ū| ≤ α|Φ| |v − ū|, (A2.3)
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where |Φ| is the constant from (24).
Proof of Theorem 2. Let w = v∗ in (A2.1) and w = v + v̇ in (A2.2)

1

2
|v + v̇ − v|2 + αΦ(v + v̇, ū) ≤ 1

2
|v∗ − v|2 + αΦ(v∗, ū)− 1

2
|v + v̇ − v∗|2,

1

2
|ū− v|2 + αΦ(ū, v) ≤ 1

2
|v + v̇ − v|2 + αΦ(v + v̇, v)− 1

2
|v + v̇ − ū|2,

moreover, let w = ū; Φ(v∗, v∗) ≤ Φ(ū, v∗) in (A1.3).
We add all three inequalities to get

|v + v̇ − v∗|2 + |v + v̇ − ū|2 + |ū− v|2+
+ 2α(Φ(v + v̇, ū)− Φ(ū, ū) + Φ(ū, v)− Φ(v + v̇, v))+

+ 2α(Φ(ū, ū)− Φ(v∗, ū) + Φ(v∗, v∗)− Φ(ū, v∗)) ≤ |v − v∗|2.
(A2.4)

Using (24), (A2.3) and (21), (22) we obtain

|v + v̇ − v∗|2 + |v + v̇ − ū|2 + (1− 2α2|Φ|2)|ū− v|2 ≤ |v − v∗|2.
Hence,

2〈v̇, v − v∗〉+ |v̇|2 + (1− 2α2|Φ|2)|ū− v|2 ≤ 0

or d

dt
|v − v∗|2 + |v̇|2 + (1− 2α2|Φ|2)|ū− v|2 ≤ 0. (A2.5)

Assuming that the parameter α is selected in accordance with the condition α < 1/(
√

2|Φ|), where
|Φ| is the constant from (24) we integrate inequality (A2.5) from t0 to t, then

|v − v∗|2 +

t∫

t0

|v̇|2dτ + (1− 2α2|Φ|2)
t∫

t0

|ū− v|2dτ ≤ |v0 − v∗|2, (A2.6)

where v0 = v(t0). It follows from (A2.6) that the trajectory |v(t) − v∗|2 ≤ |v0 − v∗|2 is limited,
and as v0 is an arbitrary initial value, the set of the equilibrium points of the system is absolutely
stable, and the integrals

t∫
t0

|v̇|2dτ < ∞,
t∫

t0

|ū − v|2dτ < ∞ converge as t ⇒ ∞, too. Inequality
(A2.6) has the same form as inequality (A1.8) and the asymptotic stability of the process can be
proved in the same way as at the end of the proof of Theorem 1. The theorem is proved.

Appendix 3

Equations (28) and (29) are rewritten as variational inequalities
1

2
|x + ẋ− x|2 + αL(x + ẋ, p̄) ≤ 1

2
|z − x|2 + αL(z, p̄)− 1

2
|x + ẋ− z|2 (A3.1)

for all z ∈ Q,
1

2
|p + ṗ− p|2 + αL(x + ẋ, p + ṗ) ≤ 1

2
|y − p|2 − αL(x + ẋ, y)− 1

2
|p + ṗ− y|2 (A3.2)

for all y ∈ P , and
1

2
|p̄− p|2 − αL(x, p̄) ≤ 1

2
|y − p|2 − αL(x, y)− 1

2
|p̄− y|2 (A3.3)
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for all y ∈ P . Besides, write down the system of inequalities (2), for convenience

L(x∗, p) ≤ (x∗, p∗) ≤ L(x, p∗) (A3.4)

for all x ∈ Q ⊆ Rn and p ∈ P ⊆ Rm.
Let us estimate the deviations of the vectors p + ṗ and p̄. Let as assume y = p̄ in (A3.2) and

y = p + ṗ in (A3.3) and add both inequalities

|p + ṗ− p̄|2 + α(L(x + ẋ, p̄)− L(x + ẋ, p + ṗ))− α(L(x, p̄)− L(x, p + ṗ)) ≤ 0.

With regard to (23) we obtain

|p + ṗ− p̄|2 ≤ α|L| |ẋ| |p + ṗ− p̄|.

Hence,
|p + ṗ− p̄| ≤ α|L||ẋ|, (A3.5)

where |L| is the constant from (23).
Proof of Theorem 3. Let z = x∗ on the right-hand side of (A3.1) and z = x+ẋ in the right-hand

inequality in (A3.4) and add both inequalities

1

2
|x + ẋ− x∗|2 +

1

2
|ẋ|2 + α(L(x + ẋ, p̄)− L(x + ẋ, p∗))− α(L(x∗, p̄)− L(x∗, p∗)) ≤ 1

2
|x− x∗|2.

Due to the left-hand inequality from (A3.4), viz., L(x∗, p̄)− L(x∗, p∗) ≤ 0, we have

〈ẋ, x− x∗〉+ |ẋ|2 + α(L(x + ẋ, p̄)− L(x + ẋ, p∗)) ≤ 0. (A3.6)

A similar estimate can be obtained from (A3.2) and (A3.3) and the left-hand inequality from
(A3.4). Let y = p∗ in (A3.2)

1

2
|p + ṗ− p|2 − αL(x + ẋ, p + ṗ) ≤ 1

2
|p∗ − p|2 − αL(x + ẋ, p∗)− 1

2
|p + ṗ− p∗|2

and make some simple transformations

〈ṗ, p− p∗〉+ |ṗ|2 − α(L(x + ẋ, p + ṗ)− L(x + ẋ, p∗)) ≤ 0. (A3.7)

Then, let y = p + ṗ in (A3.3) and, hence,

1

2
|p̄− p|2 − αL(x, p̄) ≤ 1

2
|p + ṗ− p|2 − αL(x, p + ṗ)− 1

2
|p̄− p + ṗ|2. (A3.8)

After adding and subtracting L(x + ẋ, p̄) + L(x + ẋ, p + ṗ) to this inequality we have

1

2
|p̄− p + ṗ|2 +

1

2
|p̄− p|2 − α(L(x, p̄)− L(x + ẋ, p̄)) + α(L(x, p + ṗ)− L(x + ẋ, p + ṗ))−

− α(L(x + ẋ, p̄)− L(x + ẋ, p + ṗ)) ≤ 1

2
|ṗ|2.

Using (23) and (A3.5) we rewrite the last inequality as

1

2
|p̄− p + ṗ|2 +

1

2
|p̄− p|2 − α2|L|2|ẋ|2 − α(L(x + dx, p̄)− L(x + ẋ, p + ṗ)) ≤ 1

2
|ṗ|2. (A3.9)
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Adding (A3.7) and (A3.9) we have

〈ṗ, p− p∗〉+
1

2
|ṗ|2 +

1

2
|p̄− p + ṗ|2 +

1

2
|p̄− p|2 − α2|L|2|ẋ|2 + α(L(x + ẋ, p∗)−L(x + ẋ, p̄)) ≤ 1

2
|ṗ|2.

Then, using the estimate 1

4
|ṗ|2 ≤ 1

2
|p̄− p + ṗ|2 +

1

2
|p̄− p|2 we rewrite the inequality once more

〈ṗ, p− p∗〉+
1

4
|ṗ|2 − α2|L|2|ẋ|2 + α(L(x + dx, p∗)− L(x + ẋ, p̄)) ≤ 0. (A3.10)

Finally, we add (A3.6) and (A3.10), then

〈ẋ, x− x∗〉+ 〈ṗ, p− p∗〉+ (1− α2|L|2)|ẋ|2 +
1

4
|ṗ|2 ≤ 0,

or
d

dt
|x− x∗|2 +

d

dt
|p− p∗|2 + (1− α2|L|2)|ẋ|2 +

1

4
|ṗ|2 ≤ 0.

If the parameter α satis�es the condition α < 1/|L| the inequality obtained is similar to (A1.7)
from Appendix 1 and the proof is �nished similarly to Theorem 1. The theorem is proved.

Appendix 4

Let us write out the main inequalities. The inequality in (36) can be conveniently rewritten
in the form

〈x + ẋ− x + α(∇f(x + ẋ) +∇g>(x + ẋ)π+(p + αg(x + ẋ))), z − x− ẋ〉 ≥ 0 (A4.1)

for all z ∈ Q.
The second equation from (39) is written in the form of a variational inequality

〈p + ṗ− p− αg(x + ẋ), y − p− ṗ〉 ≥ 0 (A4.2)

for all y ∈ P .
The right-hand inequality from system (2) is written in gradient form

〈∇f(x∗) +∇g>(x∗)p∗, z − x∗〉 ≥ 0 (A4.3)

for all z ∈ Q.
Proof of Theorem 4. Let z = x∗ in (A4.1) and z = x + ẋ in (A4.3) and add two inequalities

〈ẋ + α(∇f(x + ẋ)−∇f(x∗)) + α(∇g>(x + ẋ)(p + ṗ)−∇g>(x∗)p∗), x∗ − x− ẋ〉 ≥ 0. (A4.4)

Using the convexity of f(x) and g(x), we can estimate the terms in (A4.4), i.e.,

〈∇f(x + ẋ)−∇f(x∗), x + ẋ− x∗〉 ≥ 0,

〈(p + ṗ,∇g(x + ẋ)(x∗ − x− ẋ))〉 ≤ 〈p + ṗ, g(x∗)− g(x + ẋ)〉,
〈(p∗,∇g(x∗)(x∗ − x− ẋ))〉 ≤ 〈p∗, g(x + ẋ)− g(x∗)〉.

Taking into account the estimate from above, (A4.4) can be rewritten as

〈ẋ, x− x∗〉+ |ẋ|2 + α(g(x + ẋ), p + ṗ− p∗) ≤ 0. (A4.5)
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Let y = p∗ in (A4.2), then

〈ṗ, p− p∗〉+ |ṗ|2 − α(g(x + ẋ), p− ṗ− p∗) ≤ 0. (A4.6)

Adding (A4.5) and (A4.6) we obtain

〈ẋ, x− x∗〉+ 〈ṗ, p− p∗〉+ |ẋ|2 + |ṗ|2 ≤ 0,

or
d

dt
|x− x∗|2 +

d

dt
|p− p∗|2 + 2(|ẋ|2 + |ṗ|2) ≤ 0.

The inequality is similar to (A1.7) from Appendix 1 and, hence, in order to complete the proof it
is su�cient simply to repeat the proof of Theorem 1. The theorem is proved.
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