
Di�erential Equations, Vol.30, No.9, 1994, pp. 1365�1375

MINIMIZATION OF CONVEX FUNCTIONS ON CONVEX SETS
BY MEANS OF DIFFERENTIAL EQUATIONS1
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1. INTRODUCTION

Let us consider the problem on minimizing a function on a simple set, namely

x∗ ∈ Arg min {f(x) : x ∈ Q}, (1.1)

where f(x) is a di�erentiable scalar function, x ∈ Q ⊆ Rn, Rn is an Euclidean �nite-dimension
space, and Q is a simple set, i.e., a set onto which one can easily project. Examples of such sets
are the positive orthant, a parallelepiped, a ball, etc.

The gradient approach to solving problem (1.1) has long been a conventional method, but
its continuous variants are not well investigated. First of all, this pertains to methods in which
one should take into account constraints imposed on the variables. In this paper we consider the
gradient methods of �rst and second order, where the constraints are taken into account by means
of projection operators. The asymptotic and exponential stability of such processes is proved.

2. CONTINUOUS METHOD OF GRADIENT PROJECTION

The idea of the method can be presented in the following way. If x∗ is a minimum point of
problem (1.1), then the necessary and su�cient conditions

x∗ = πQ(x∗ − α∇f(x∗)) (2.1)

are satis�ed, where πQ(·) is the projection operator of a vector onto the set Q, α > 0 is a parameter
such as the step length, and ∇f(x) is the gradient of function f(x) at the point x. Condi-
tion (2.1) has a simple geometric meaning: moving from the point x∗ along the antigradient, we
return to the point after the projection operator, i.e., x∗ is a �xed point or an equilibrium point.
The discrepancy πQ(x− α∇f(x))− x can be considered as a transformation of space Rn into Rn.
This transformation determines a vector �eld.

Let us formulate the problem on drawing a trajectory such that its tangent line coincides with
the �eld vector at the given point. The problem is described by the system of di�erential equations

dx

dt
+ x = πQ(x− α∇f(x)), x(t0) = x0. (2.2)
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The �dynamical� de�nition of the �xed point x∗ follows from (2.2), namely, x∗ is the trajectory
point at which the velocity is zero. It follows from general theorems that the continuous right-
hand side of system (2.2) ensures the existence of a solution on a �nite interval. If the Lipschitz
condition is satis�ed for the right-hand side (it does so in our case), then the trajectory exists and
is unique on the in�nite interval, i.e., for all t ≥ t0.

If πQ(·) = I is the unit matrix (i.e., Q = Rn), then Eq. (2.2) becomes

dx

dt
= α∇f(x), x(t0) = x0. (2.3)

The continuous gradient method without the projection operator has been considered in many
papers, (e.g., see [1]�[5]). Regularized gradient equations have been investigated by Vasil'ev [6].
The paper [7] includes the review of papers written by non-Russian authors and devoted to equa-
tions like (2.3). Di�erential equations (2.2) with the projection operator have been studied in
detail in [8]. Asymptotic and exponential stability of these systems is proved there.

Here we dwell on the case in which the projection operator πQ(·) is linear. This variant of
the gradient projection method has been studied in detail by Evtushenko and Zhadan [9, 10] and
by Tanabe [11]. It is generated by the problem on minimizing the goal function f(x) under the
equality-type constraints Q = {x : g(x) = 0, x ∈ Rn}, where g(x) is a di�erentiable vector
function. One should construct a gradient trajectory belonging to the manifold Q. To this end, at
each point x ∈ Q one constructs the tangent subspace K, which uniquely generates the operator
of projection of the space Rn onto K such that πk(K) = K. Thus, in particular, the equality
πk(x) = x is satis�ed for the point x being the tangency point of K to the manifold Q. In order
to construct the vector �eld at each point x, one projects the gradient ∇f(x) onto the tangent
space. Hence, this �eld is described by the transformation πk(∇f(x)).

Consider the following: construct a trajectory x(t) belonging to the manifold Q such that its
tangent coincides with the �eld vector πk(∇f(x)) at each point x. The problem is described by
the system of di�erential equations

dx

dt
= −απk(∇f(x)), x(t0) = x0.

The latter can be obtained from (2.2) in a quite formal way if we take into account the fact that
in this case the projection operator is linear and the condition πk(x) = x is satis�ed for it.

The projection operator is determined by the analytical formula

πk(·) = I −∇g>(x)
[
∇g(x)∇g>(x)

]−1∇g(x),

where ∇g(x) is the gradient of function g(x).
Di�erential equations of internal and external linearization for convex programming problems

with equality-type constraints have been described in [12, 13]. Saddle methods have been inves-
tigated in [14, 15]. We also want to mention the approach presented in [16]. The properties of
iterative analog to the continuous gradient projection method, namely,

xn+1 = πQ(xn − α∇f(xn)), (2.4)

have been well studied in [17].
In what follows we formulate a series of statements on the asymptotic stability steadiness of the

gradient projection method (2.2), successively imposing stricter conditions on the goal function
f(x) and the parameter α.
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First, we recall that the projection operator πQ(b) of vector b onto the set Q can be determined
by solving the quadratic problem

πQ(b) = arg min
{

1

2
|z − b|2 : z ∈ Q

}
,

which, in turn, is equivalent to solving the variational inequality

〈πQ(b)− b, z − πQ(b)〉 ≥ 0 (2.5)

for all z ∈ Q.
Let us rewrite equations (2.1) and (2.2) in the form (2.5). The former is equivalent to the

variational inequality
〈∇f(x∗), z − x∗〉 ≥ 0 (2.6)

for all z ∈ Q, whereas the latter is equivalent to the variational inequality

〈ẋ + x− (x− α∇f(x)), z − ẋ− x〉 ≥ 0 (2.7)

for all z ∈ Q, where ẋ = dx/dt.
In what follows we present a theorem on the method convergence, assuming that f(x) is an

arbitrary di�erentiable function.
Theorem 1. If the goal function f(x) is di�erentiable, the gradient ∇f(x) satis�es the Lip-

schitz condition, Q is a convex closed bounded set, the initial condition is x0 ∈ Q, and the pa-
rameter α is positive, then the trajectory of process (2.2) has a nonempty set of limit points, each
being a stationary point of problem (1.1).

Proof. Before proving the theorem, we note that the trajectory of the di�erential equation
(2.2) can always be approximated on any �nite time interval by a sequence of trajectories of
iterative or discrete gradient projection method depending on the discretization step of time axis.
But if the initial point x0 belongs to the set Q, then so do all iterative trajectories. Hence, the
continuous trajectory (their limit) also belongs to the set Q.

Let us show that the trajectory x(t) converges (in the sense of subsequences) to the set of
stationary points of the initial problem, i.e., ρ(x(t), X∗) → 0 as t →∞.

Set z = x in the inequality (2.7); then

|ẋ|2 + α〈∇f(x), ẋ〉 ≤ 0, (2.8)

or df(x)

dt
+

1

α
|ẋ|2 ≤ 0. (2.9)

Let us integrate the obtained inequality over [t0, t]:

f(x) +
1

α

t∫

t0

|ẋ|2dτ ≤ f(x0). (2.10)

It follows that the integral
t∫

t0

|ẋ|2dτ < ∞ converges as t →∞.

If we assume that there exists an ε > 0 such that |ẋ| ≥ ε for all t ≥ t0, then we obtain a
contradiction. Therefore, there exists a subsequence of time moments ti →∞ such that |ẋ| → 0.
Since x(t) is bounded, we again can choose a subsequence of time moments, which we also denote
by ti such that x(ti) → x′ and ẋ(ti) → 0.
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Let us consider inequality (2.7) for all time moments ti → ∞. Passing to the limit, we write
out the limit inequality

〈∇f(x′), z − x′〉 ≥ 0

for all z ∈ Q. This inequality is su�cient but not necessary for minimum. In this case x′ is a
stationary point. Thus, the theorem is proved.

Note that in proving the theorem we have not used the Lipschitz condition imposed on the
gradient ∇f(x), but it is necessary for the trajectory x(t) to exist.

Next, let us cite the theorem on convergence and estimates of the rate of convergence with
respect to a functional assuming that f(x) is a convex di�erentiable function. Here we do not
assume that the initial condition belongs to the set Q; moreover, x0 ∈ Rn.

Theorem 2. Assume that

(i) the set of solutions to problem (1.1) is not empty, i.e., X∗ 6= ∅;
(ii) the goal function f(x) is convex and di�erentiable, and its gradient satis�es the Lipschitz

condition with constant L;

(iii) Q is a convex closed set.

Then the following statements hold:

(a) if the parameter α in the process (2.2) is chosen from the condition α < 2/L, then the
trajectory x(t) converges monotonically (|x(t + ∆t)− x∗| ≤ |x(t)− x∗|) with respect to norm
to one of the solutions to the problem for all x0 ∈ Rn;

(b) if the parameter α is chosen from the condition α > 0, then the trajectory x(t) converges to
a solution to the problem for all x0 ∈ Rn with the estimate f(x)− f(x∗) ≤ C/t.

Proof. Let us prove statement (a). Set z = x∗ in (2.7) and z = x + ẋ in (2.6) and add these
two inequalities. We obtain

〈ẋ + α(∇f(x)−∇f(x∗)), x∗ − x− ẋ〉 ≥ 0. (2.11)

Using the inequality [18]

〈∇f(x1)−∇f(x3), x3 − x2〉 ≤ L

4
|x1 − x2|2, (2.12)

which holds for all x1, x2, x3 ∈ Q, where L is the Lipschitz constant for ∇f(x) on Q, we estimate

〈∇f(x)−∇f(x∗), x∗ − x− ẋ〉 ≤ L

4
|ẋ|2. (2.13)

Taking the latter into account, we represent (2.11) as

〈ẋ, x− x∗ + ẋ〉 − α
L

4
|ẋ|2 ≤ 0.

Hence,
1

2

d

dt
|x− x∗|2 +

(
1− α

L

4

)
|ẋ|2 ≤ 0. (2.14)

Since α < 2/L, we see that c = 1− αL/4 > 0.
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By integrating inequality (2.14) over the range [t0, t], we obtain

|x− x∗|2 + c

t∫

t0

|ẋ|2dτ ≤ |x0 − x∗|2, (2.15)

where x0 = x(t0). It follows from (2.15) that the trajectory is bounded, namely |x(t) − x∗|2 ≤
≤ |x0 − x∗|2, and the trajectory tends to x∗ monotonically with respect to norm.

Since |x(t)−x∗|2 decreases monotonically and since each limit point is a solution to the problem,
it follows that the limit point is unique, i.e., the trajectory converges monotonically to solution to
the original problem.

Let us now prove statement (b). Let us represent (2.11) as

〈ẋ, x∗ − x〉+ α〈∇f(x)−∇f(x∗), x∗ − x〉 − |ẋ|2 − α〈∇f(x)−∇f(x∗), ẋ〉 ≥ 0. (2.16)

Taking into account the fact that the gradient ∇f(x) is monotone, we obtain

d

dt
|x− x∗|2 + |ẋ|2 + α

d

dt
(f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉) ≤ 0. (2.17)

Next, integrating (2.17) from t0 to t, we obtain

|x− x∗|2 +

t∫

t0

|ẋ|2dτ + α(f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉) ≤

≤ |x0 − x∗|2 + α(f(x0)− f(x∗)− 〈∇f(x∗), x0 − x∗〉).
(2.18)

Since f(x) is convex, i.e., f(x) − f(x∗) − 〈∇f(x∗), x − x∗〉 ≥ 0, it follows from (2.18) that the
trajectory x(t) is bounded, i.e., |x(t) − x∗| ≤ C, and decreases monotonically in the sense of
f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉. These properties are su�cient for the trajectory to converge to
a limit point, namely, x(t) → x∗ ∈ X∗ as t →∞ for all x0.

Let us estimate the rate at which the goal function decreases along the trajectory. Set z = x∗

in inequality (2.7) and represent the latter as

〈ẋ, x∗ − x− ẋ〉 ≥ α〈∇f(x), x + ẋ− x∗〉 ≥ 0. (2.19)

Taking into account the fact that f(x) is convex, consider the system of inequalities

f(x)− f(x∗) ≤ 〈∇f(x), x− x∗〉 = 〈∇f(x), x + ẋ− x∗〉 − 〈∇f(x), ẋ〉. (2.20)

Comparing (2.19) and (2.20) and taking into account the fact that x(t) → x∗, ẋ → 0, and
∇f(x(t)) → ∇f(x∗), we obtain

f(x)− f(x∗) ≤ (1/α)〈ẋ, x∗ − x− ẋ〉 − 〈∇f(x), ẋ〉 =

= 〈ẋ, (1/α)(x∗ − x− ẋ)−∇f(x)〉 ≤ C|ẋ|.

Hence, denoting f(x∗) = f ∗, we have

f(x)− f ∗ ≤ C|ẋ|. (2.21)

By comparing (2.9) and (2.11), we obtain

d(f(x)− f ∗)
dt

+
1

C2α
(f(x)− f ∗)2 ≤ 0. (2.22)
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Next, we separate the variables and integrate inequality (2.22), thus obtaining

−(f(x)− f ∗)−1 + (C2α)−1 ≤ C1.

Therefore, f(x)− f ∗ ≤ (C2t− C1)
−1 ≈ C/t, and the theorem is proved.

The iterative method (2.4) of gradient projection converges under the same conditions.
If the goal function in problem (1.1) is strongly convex, then we can estimate the rate of

convergence of the process (2.2).
Theorem 3. If, in addition to the conditions of Theorem 2, the goal function is strongly

convex, then the only equilibrium point of system (2.2) is exponentially stable, i.e.,

|x(t)− x∗|2 ≤ C exp(−2s(α)t), (2.23)

where
s(α) =

{
α`(1− α`/4) if α < 4/(L + `),
αL(1− αL/4) if α > 4/(L + `).

(2.24)

Proof. Let us rewrite inequality (2.11) in the form

〈ẋ, x− x∗〉+ |ẋ|2 + α〈∇f(x)−∇f(x∗), x− x∗〉+ α〈∇f(x)−∇f(x∗), ẋ〉 ≤ 0.

Then
1

2

d

dt
|x− x∗|2 + |ẋ|2 + α〈∇f(x)−∇f(x∗), ẋ〉+ α〈∇f(x)−∇f(x∗), x− x∗〉 ≤ 0. (2.25)

Let us single out perfect squares from the second and third terms, namely,

1

2

d

dt
|x− x∗|2 +

∣∣∣∣ẋ +
α

2
(∇f(x)−∇f(x∗))

∣∣∣∣
2

− α2

4
|∇f(x)−∇f(x∗)|2+

+ α〈∇f(x)−∇f(x∗), x− x∗〉 ≤ 0.

(2.26)

Next, we omit the second term in (2.26) and estimate the third term by means of the following
inequality [18]:

|∇f(x1)−∇f(x2)|2 + L`|x1 − x2|2 ≤ (L + `)〈∇f(x1)−∇f(x2), x1 − x2〉 (2.27)

which holds for all x1 and x2 from Q, where ` is the constant of strong convexity for the goal
function, and L is the Lipschitz constant for the gradient ∇f(x). Then we have

1

2

d

dt
|x− x∗|2 + α2L`

4
|x− x∗|2 + α(1− α(L + `)/4)〈∇f(x)−∇f(x∗), x− x∗〉 ≤ 0. (2.28)

If α < 4/(L + `), then 1− α(L + `)/4 > 0. In this case, in order to estimate the last term in
(2.28), we use the inequality

`|x− x∗|2 ≤ 〈∇f(x)−∇f(x∗), x− x∗〉. (2.29)

Otherwise, if α > 4/(L + `), we have 1− α(L + `)/4 < 0, and, therefore, apply the inequality

〈∇f(x)−∇f(x∗), x− x∗〉 ≤ L|x− x∗|2. (2.30)

Then (2.28) can be rewritten as

1

2

d

dt
|x− x∗|2 + s(α)|x− x∗|2 ≤ 0, (2.31)

6



where s(α) is determined by formula (2.24).
By integrating (2.31), we obtain

|x(t)− x∗|2 ≤ C exp(−2s(α)t), (2.32)

where C = |x0 − x∗|2. To ensure that the trajectory converges exponentially, it is necessary that
s(α) > 0, i.e., α < min{4/`, 4/L} =

4

L
. Thus, although the process (2.2) converges for any

parameter α, the exponential convergence is ensured only for α ∈ (0, 4/L).
Since s(α) consists of branches of two parabolas (an ascending and a descending one), it is

easy to see that the optimal α is equal to αopt = 4/(L + `) with s(αopt) = 4L`/(L + `)2. Thus, the
theorem is proved.

3. SECOND-ORDER CONTINUOUS METHOD OF THE GRADIENT
PROJECTION

The discrepancy πQ(x − α∇f(x)) − x generated by the necessary condition (2.1) determines
the transformation of space Rn into Rn. This transformation can be considered as a vector �eld.

Let us formulate the problem on drawing a trajectory such that some linear combination of
velocity and acceleration on this trajectory coincides with the �eld vector at each point. The
problem is described by the system of di�erential equations [8]

µ
d2x

dt2
+ β

dx

dt
+ x = πQ(x− α∇f(x)), x(t0) = x0, ẋ(t0) = ẋ0. (3.1)

Here µ > 0 and β > 0 are parameters. If µ = 0 and β = 1, then process (3.1) coincides with (2.2).
If Q = Rn, i.e., πQ(∗) = I is the identity operator, then (3.1) becomes

µ
d2x

dt2
+ β

dx

dt
= −α∇f(x), x(t0) = x0, ẋ(t0) = ẋ0. (3.2)

If the gradient ∇f(x) satis�es the Lipschitz condition, then the solution x(t) to system (3.1), (3.2)
exists and is unique for all t ≥ t0. Here we should mention the papers [8, 19], in which equations
of the form (3.2) have been considered earlier.

There exist various iterative analogs of the continuous method of gradient projection, e.g.,

xn+1 = πQ{xn − α∇f(xn) + µ(xn − xn−1)}. (3.3)

The properties of this process have been studied in [8].
Let us represent the process (3.1) as the variational inequality

〈µẍ + βẋ + x− (x− α∇f(x)), z − µẍ− βẋ− x〉 ≤ 0 (3.4)

for all z ∈ Q, where ẋ = dx/dt and ẍ = d2x/dt2.
Equation (3.1) and the variational inequality (3.4) are equivalent.
Let us present a theorem on convergence of the method to the solution of the initial problem.
Theorem 4. Assume that

(i) the set of solutions to problem (1.1) is not empty, i.e., X∗ 6= ∅;
(ii) the goal function f(x) is convex and twice continuously di�erentiable, with its second deriva-

tive bounded on a convex closed set containing the trajectory x(t), i.e., |∇2f(x)| ≤ N ;
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(iii) Q is a convex closed set;

(iv) the parameters α > 0 and µ > 0 satisfy the condition µ < β2/(1 + αN).
Then the trajectory x(t) converges to a solution to the problem, i.e., x(t) → x∗ ∈ X∗ as t → ∞
for all x0.

Proof. Set z = x∗ in (3.4) and z = µẍ + βẋ + x in (2.6), and add these inequalities. Then

〈µẍ + βẋ + α(∇f(x)−∇f(x∗)), x∗ − µẍ− βẋ− x〉 ≤ 0. (3.5)

Hence, we have

|µẍ + βẋ|2 + 〈µẍ + βẋ, x− x∗〉+ α(∇f(x)−∇f(x∗)), x− x∗〉+
+ α〈∇f(x)−∇f(x∗), µẍ + βẋ〉 ≤ 0.

(3.6)

Next, we omit the nonnegative third term in (3.6) and then transform the other terms as follows:

µ2|ẍ|2 + µβ
d

dt
|ẋ|2 + β2|ẋ|2 + µ〈ẍ, x− x∗〉+

1

2
β

d

dt
|x− x∗|2+

+ αµ〈∇f(x)−∇f(x∗), ẍ〉+ αβ〈∇f(x)−∇f(x∗), ẋ〉 ≤ 0.
(3.7)

Using the identities
1

2

d2

dt2
|x− x∗|2 = |ẋ|2 + 〈x− x∗, ẍ〉,

d

dt
〈∇f(x)−∇f(x∗), ẋ〉 = 〈∇2f(x)ẋ, ẋ〉+ 〈∇f(x)−∇f(x∗), ẍ〉,

(3.8)

we transform (3.7) so that

µ2|ẍ|2 + µβ
d

dt
|ẋ|2 + (β2 − µ)|ẋ|2 + µ

1

2

d2

dt2
|x− x∗|2+

+
1

2
β

d

dt
|x− x∗|2 − αµ〈∇2f(x)ẋ, ẋ〉+

+ αµ
d

dt
〈∇f(x)−∇f(x∗), ẋ〉+ αβ〈∇f(x)−∇f(x∗), ẋ〉 ≤ 0.

(3.9)

According to the conditions of the theorem, the second derivative is bounded by a constant N on
some convex set containing the trajectory x(t), i.e., 〈∇2f(x)ẋ, ẋ〉 ≤ |∇2f(x)| |x|2 ≤ N |x|2. Taking
into account this fact and the relation

d

dt
{f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉} = 〈∇f(x)−∇f(x∗), ẋ〉 (3.10)

and denoting
ϕ(x) =

1

2
|x− x∗|2 + α(f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉),

we transform inequality (3.9) into

µ
d2

dt2
ϕ(x) + β

d

dt
ϕ(x) + µβ

d

dt
|ẋ|2 + (β2 − µ(1 + αN))|ẋ|2 + µ2|ẍ|2 ≤ 0. (3.11)

Since µ < β2/(1 + αN), we see that β2 − µ(1 + αN) > 0, and, therefore, inequality (3.11) can be
integrated from t0 to t, namely,

µ
d

dt
ϕ(x) + βϕ(x) + µβ|ẋ|2 + (β2 − µ(1 + αN))

t∫

t0

|ẋ|2dτ + µ2

t∫

t0

|ẍ|2dτ ≤ C. (3.12)
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Let us show that the trajectory x(t) is bounded. To this end, we write inequality (3.12) as

µ
d

dt
ϕ(x) + βϕ(x) ≤ C. (3.13)

Hence,
µ exp

(
−β

µ
t

)
d

dt

(
exp

(
β

µ
t

)
ϕ(x)

)
≤ C.

Next,
d

dt

(
exp

(
β

µ
t

)
ϕ(x)

)
≤ C

1

µ
exp

(
β

µ
t

)
. (3.14)

By integrating the latter, we obtain

exp

(
β

µ
t

)
ϕ(x) ≤ C1 exp

(
β

µ
t

)
+ C2,

and, therefore,
ϕ(x) ≤ C1 + C2 exp

(
−β

µ
t

)
≤ C3. (3.15)

The function ϕ(x) is strongly convex, and consequently, each of its Lebesgue sets is bounded.
Thus, in particular, the Lebesgue set satisfying (3.15) is bounded. The trajectory x(t) belongs to
it, and, therefore, it is also bounded, i.e.,

|x(t)− x∗| ≤ C. (3.16)

Let us show that the �rst term in (3.12) is bounded below. To this end, we �rst show that |ẋ|2
is bounded. By taking into account the fact that all terms but the �rst are nonnegative (recall
that f(x) − f(x∗) − 〈∇f(x∗), x − x∗〉 ≥ 0 0 for all x ∈ Rn since f(x) is convex) and by using
identity (3.10), we can rewrite (3.12) in the form

〈x− x∗ + α〈∇f(x)−∇f(x∗), ẋ〉〉+ β|ẋ|2 ≤ C/µ,

or ∣∣∣(2
√

β)−1(x− x∗ + α(∇f(x)−∇f(x∗))) +
√

βẋ
∣∣∣
2 ≤

≤ 1

µ
C + (4β)−1|x− x∗ + (∇f(x)−∇f(x∗))|2 ≤ Const.

Since |x−x∗+(∇f(x)−∇f(x∗))|2 is bounded, it follows from the last inequality that the derivative
is bounded, i.e.,

|ẋ|2 ≤ Const. (3.17)
By taking into account the identity 0 ≤ |a + b|2 = |a|2 + 2〈a, b〉 + |b|2, we estimate the �rst term
in (3.12) as

d

dt
ϕ(x) = 〈x− x∗ + α〈∇f(x)−∇f(x∗), ẋ〉〉 ≥ −C4 + C5

2
.

Now we again rewrite (3.12) as

(β2 − µ(1 + αN))

t∫

t0

|ẋ|2dτ + µ

t∫

t0

|ẍ|2dτ ≤ C +
C4 + C5

2
≤ Const. (3.18)
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It follows from this estimate that the integrals
t∫

t0

|ẋ|2dτ < ∞,

t∫

t0

|ẍ|2dτ < ∞ (3.19)

converge as t →∞.
Let us prove that the set of equilibrium points is asymptotically stable. Assuming that there

exists an ε > 0 such that |ẍ(t)| ≥ ε and |ẋ(t)| ≥ ε for all t ≥ t0, we obtain a contradiction to the
convergence of integrals. Hence, there exists a subsequence of time moments ti → ∞ such that
|ẍ(ti)| → 0 and |ẋ(ti)| → 0. Since x(t) is bounded, we again choose a subsequence (which we also
denote by ti) such that x(ti) → x′, |ẍ(ti)| → 0, and |ẋ(ti)| → 0.

Let us consider inequality (3.4) for all time moments ti →∞, and write out the limit inequality

〈∇f(x′), z − x′〉 ≥ 0

for all z′ ∈ Q. Since f(x) is convex, we have x′ = x∗ ∈ Q. Thus, any limit point of the trajectory
x(t) is a solution to the problem.

Omitting the last terms in inequality (3.11), we integrate it from t0 to t and obtain

Φ(x) ≡ µ
d

dt
ϕ(x) + βϕ(x) + µβ|ẋ|2 ≤ µ

d

dt
ϕ(x(t0)) + βϕ(x(t0)) + µβ|ẋ(t0)|2.

It follows that Φ(x) decreases monotonically along any trajectory x(t). If we assume that the
trajectory x(t) has two limit points, x′ and x′′, then two subsequences converging to x′ and x′′,
respectively, result in Φ(x′) and Φ(x′′), respectively (it has been proved earlier that dϕ(x(t))/dt →
→ 0 and |ẋ(t)|2 → 0). Since Φ(x) is a strongly convex function, we see that Φ(x′) 6= Φ(x′′).
If we take two neighborhoods of the points x′ and x′′ so that the corresponding intervals having
the centers at the points Φ(x′) and Φ(x′′) do not intersect, then we see that terms of a monotonic
numerical sequence lie in two nonintersecting intervals, which contradicts the monotonicity. Thus,
the theorem is proved.

Next, we cite the theorem on estimating the rate of convergence for the second-order method
of gradient projection.

Theorem 5. If f(x) is a strongly convex di�erentiable function, Q is a convex closed set, and
the parameters µ, β, and α satisfy the conditions 0 < µ < min{(√1 + β3 − 1)/2β,

√
β/2}, where

β < 3 3

√
s(α)2, and

s(α) =





α`(1− 3α`/4) if α < 4/3(L + `),

αL(1− 3αL/4) if α > 4/3(L + `),
(3.20)

then system (3.1) has a unique equilibrium point, and this point is exponentially stable, i.e.,
|x− x∗|2 ≤ C3 exp(−(µ− ε)t), where ε < µ.

Proof. We rewrite inequality (3.6) in the form

µ2|ẍ|2 + 2µβ〈ẋ, ẍ〉+
1

2
β2|ẋ|2 +

1

2
β2|ẋ|2 + µ〈x− x∗, ẍ〉+ αµ〈∇f(x)−∇f(x∗), ẍ〉+

+
1

2
β

d

dt
|x− x∗|2 + αβ〈∇f(x)−∇f(x∗), ẋ〉+ α〈∇f(x)−∇f(x∗), x− x∗〉 ≤ 0.

Next, we combine the �rst term with the sixth term and the fourth term with the eighth term
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and separate perfect squares from these pairs. We obtain
1

2
µ

d2

dt2
|x− x∗|2 +

1

2
β

d

dt
|x− x∗|2 + 2µβ〈ẋ, ẍ〉+

(
1

2
β2 − µ

)
|ẋ|2+

+
∣∣∣∣µẍ +

α

2
(∇f(x)−∇f(x∗))

∣∣∣∣
2

− α2

4
|∇f(x)−∇f(x∗)|2+

+

∣∣∣∣∣
β√
2
ẋ +

α√
2
(∇f(x)−∇f(x∗))

∣∣∣∣∣
2

−

− α

2
|∇f(x)−∇f(x∗)|2 + α〈∇f(x)−∇f(x∗), x− x∗〉 ≤ 0.

Omitting some positive terms, we rewrite the last inequality as
1

2
µ

d2

dt2
|x− x∗|2 +

1

2
β

d

dt
|x− x∗|2 + 2µβ〈ẋ, ẍ〉+

(
1

2
β2 − µ

)
|ẋ|2−

− 3α2

4
|∇f(x)−∇f(x∗)|2 + α〈∇f(x)−∇f(x∗), x− x∗〉 ≤ 0.

(3.21)

Next, we estimate the �fth term in (3.21) by means of inequality (2.27) and rewrite (3.21) as

1

2
µ

d2

dt2
|x− x∗|2 +

1

2
β

d

dt
|x− x∗|2 +

3

4
α2L`|x− x∗|2+

+ α
(
1− 3

4
α(L + `)

)
〈∇f(x)−∇f(x∗), x− x∗〉 ≤ 0.

(3.22)

If the condition α < (4/3)(L + `)−1 is satis�ed, then 1− (3/4)α(L + `) > 0, and we use estimate
(2.29); otherwise (α > (4/3)(L + `)−1) we use (2.30). Then, taking into account the previous
considerations, we represent (3.21) in the form

1

2
µ

d2

dt2
|x− x∗|2 +

1

2
β

d

dt
|x− x∗|2 + s(α)|x− x∗|2 + µβ

d

dt
|ẋ|2

(
1

2
β2 − µ

)
|ẋ|2 ≤ 0, (3.23)

where the function s(α) is determined by (3.20).
The second-order di�erential inequality (3.23) is nonhomogeneous and includes the term

µβ(d/dt)|ẋ|2 + (β2/2 − µ)|ẋ|2 having inde�nite sign. This makes it di�cult to analyze the
inequality. Therefore, following the idea proposed by A. Nedich, we multiply (3.23) by exp(µt)
and, using the formula

d

dt
(exp(µt)y) = µ exp(µt)y + exp(µt)

d

dt
y, (3.24)

reduce it to
1

2
µ

d

dt

(
exp(µt)

d

dt
|x− x∗|2

)
+

1

2
(β − µ2)

d

dt

(
exp(µt)|x− x∗|2

)
+

+
(
s(α)− 1

2
(β − µ2)µ

)
exp(µt)|x− x∗|2+

+ µβ
d

dt
(exp(µt)|ẋ|2) +

((
1

2
β2 − µ

)
− µ2β

)
exp(µt)|ẋ|2 ≤ 0.

(3.25)

Putting
1

2
(β − µ2) > 0, s(α)− 1

2
(β − µ2)µ > 0,

(
1

2
β2 − µ

)
− µ2β > 0 (3.26)

and integrating (3.25) from t0 to t, after simple transformations we obtain

µ
d

dt
|x− x∗|2 + (β − µ2)|x− x∗|2 ≤ 2C exp(−µt). (3.27)
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Multiplying the latter by exp((µ− ε)t), where µ− ε > 0, and applying formula (3.24), we rewrite
(3.27) as

1

2
µ

d

dt
ψ(x) +

(
β − 3

2
µ2

)
ψ(x) ≤ C exp(−εt), (3.28)

where ψ(x) = exp((µ− ε)t)|x− x∗|2.
Integrating (3.28) from t0 to t and then reasoning as in integrating inequality (3.13), we obtain

exp((µ− ε)t)|x− x∗|2 ≤
(
C1ε

−1(exp(−εt0)− exp(−εt)) + C2

)
.

Hence,
|x− x∗|2 ≤ C3 exp(−(µ− ε)t), (3.29)

where ε < µ.
Let us �nd the constraints on µ from conditions (3.26). The �rst condition results in µ <

√
β/2.

Another constraint can be obtained by solving the quadratic equation µ2 + (1/β)µ − β/2 = 0.
The latter has the roots µ1,2 = (−1±√1 + 2β3)/2β. Therefore, if 0 < µ < (

√
1 + 2/β3 − 1)/2β,

then (β2/2− µ)− µ2β > 0. Combining the two constraints for µ, we have

0 < µ < min





√
1 + 2β3 − 1

2β
,

√
β

2



 . (3.30)

Finally, the last constraint for µ can be found from the last condition in (3.26) by solving the cubic
equation µ3 − βµ + 2s(α) = 0. According to the Cardano formula, its roots are µ = v − β/3v,
where

v =
3

√√√√√−s(α) +

√√√√s2(α)−
(

β

3

)2

.

If s(α)2 − (β/3)3 > 0, then the equation has one negative root and two complex ones, i.e., the
condition s(α)− (1/2)(β − µ2)µ > 0 is satis�ed for all µ ≥ 0 if

β < 3 3

√
s2(α). (3.31)

Hence, if the parameters µ, β, and α are related by (3.29) and (3.30), then the trajectory x(t)
converges to x∗ and the rate of convergence is exponential. Thus, the theorem is proved.

Both the �rst- and second-order methods of gradient projection have exponential degree of
convergence, but the convergence exponent in the second-order method can always be made larger
than that in the �rst-order method by choosing the parameters α, β, and µ. In this sense the
second-order method converges faster than the �rst-order one.
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