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Abstract. The two person non-zero sum game is considered in the following
statements: in classical form, under the availability of inequality-constraints and
coupled constraints. A extragradient method for computing Nash equilibria for
these statements is suggested and its convergence is investigated.
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1 Introduction
Let Ω = X1 × X2 be a rectangle, where X1 ∈ Rn1

1 , X2 ∈ Rn2
2 are convex closed sets

from �nite-dimensional Euclidean spaces, generally speaking, various dimensionality.
Let functions f1(x1, x2) + ϕ1(x1), f2(x1, x2) + ϕ2(x2) be determined on the product
space Rn1

1 × Rn2
2 . Consider a extreme mapping Y (x) = y1(x2) × y2(x1), which maps

any point x = (x1, x2) ∈ Ω to some convex closed subset from Ω

y1(x2) ∈ Argmin{f1(z1, x2) + ϕ1(z1) | z1 ∈ X1},
y2(x1) ∈ Argmin{f2(x1, z2) + ϕ2(z2) | z2 ∈ X2}. (1)

The subset Y (x) represents by itself the direct product of optimal solution sets for
problem (1). If functions f1(z1, x2)+ϕ(z1), f2(x1, z2)+ϕ(z2) are continuous and convex
in own variables, i.e. the �rst function is convex in z1, the second one is convex in
z2 for any x1 and x2, Xi, i = 1, 2 are convex compact sets, then there exists a �xed
point x∗ = (x∗1, x

∗
2) of this mapping, Aubin, Frankowska 1990. This point satis�es the

system of extreme inclusions

x∗1 ∈ Argmin{f1(z1, x
∗
2) + ϕ1(z1) | z1 ∈ X1},

x∗2 ∈ Argmin{f2(x
∗
1, z2) + ϕ2(z2) | z2 ∈ X2}. (2)
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The problem of computing a �xed point (2) was formulated by Nash 1950 as a
n-person game. The (2) is its particular case. In this game the set Xi, i = 1, 2 is
interpreted as the strategy set of i-th player, where zi ∈ Xi is a individual strategy of
the player, f1(z1, x2) + ϕ1(z1) and f2(x1, z2) + ϕ2(z2) are payo� functions of players.
A characteristic sense of a �xed point x∗ of (2) is that any player is not interested
to disturb the equilibrium state as anybody of them cannot reduce value of its
payo� function in the one-sided order. Any solution of game (2) we shall call also
as equilibrium solution or equilibrium. This solution, in particular, means a condition
of compromise with a summarized prize f1(x

∗
1, x

∗
2) + ϕ1(x

∗
1) + f2(x

∗
1, x

∗
2) + ϕ2(x

∗
2).

After publication, Nash 1950 the e�orts of researchers were undertaken to develop
solution methods for games. As the result the methods of solving for two person
zero-sum game were found out. Formally this game can be reduced to a saddle point
problem and, therefore, saddle point methods provide some tools to solve a zero-
sum game. We mark some papers in this topic. First of all it is the iterative method
for an evaluation of value of matrix game. The method was o�ered by Brown 1951,
the convergence of it was proved by Robinson 1951. Bakushinsky and Goncharsky
1994 extended the approach to convex-concave games and proved convergence of
it for two person zero-sum games. The number of the approaches uses idea of an
transformation of game to other type of problems. For example, Hansen and Scarf
1974 approximated a game by means of some mapping to calculate a �xed point of
it with the help of simplicial partitions of a set. Lemke and Hawson 1964 reduced
the game to complementarity problem and applied the pivoting-approach to solve it.
However from a point of view of game mathematical modelling the game methods
look more attractive on a comparison with approaches of a reduction them to other
types of problems. We pick out another paper, Mills 1960, where a bimatrix game is
reduced to non-convex quadratic programming problem.

In the present article the gradient descent idea for the solution of non-zero sum
game is used. Earlier, this gradient idea but in other form was considered and justi�ed
for potential game by Rosen 1965. The outcomes obtained there follow as a particular
case from outcomes of the present paper. It is known, Nikaido and Isoda 1955 that
any game always can be presented in equivalent form of computing a �xed point of
extreme inclusion induced by normalized function of two vectorial variables of the
same dimensionality. If the initial problem was a zero-sum game, then the normalized
function is antisymmetric. In this paper the sizeable extension of class of games with
an antisymmetric normalized function (i.e. zero-sum games) is introduced up to a
game class with positive semide�nite (skew-symmetric) normalized function. The
introduced class of game problems includes itself all zero-sum games and this class can
be considered as analog of convex programming in the class of non-linear programming
problems. The theory of solution methods for bilinear games is developed and presen-
ted in Antipin 2002.
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2 Discussion of the problem
Problem (2) represents a system of extreme inclusions, which it always is possible to
scalarize and to present in the form of problem for computing a �xed point of extreme
map. To that end we enter a normalized function of the kind

Φ(v, w) + ϕ(w) = f1(z1, x2) + ϕ1(z1) + f2(x1, z2) + ϕ2(z2),

where w = (z1, z2), v = (x1, x2), v, w ∈ Ω = X1 ×X2. In terms of new variables the
problem (2) can be written in the shape

v∗ ∈ Argmin{Φ(v∗, w) + ϕ(w) | w ∈ Ω} (3)

or that is the same

Φ(v∗, v∗) + ϕ(v∗) ≤ Φ(v∗, w) + ϕ(w) ∀w ∈ Ω. (4)

Uneasy to be convinced of equivalence of problems (2) and (3). Really, we present (4)
as

f1(x
∗
1, x

∗
2) + ϕ1(x

∗
1) + f2(x

∗
1, x

∗
2) + ϕ2(x

∗
2) ≤

≤ f1(z1, x
∗
2) + ϕ1(z1) + f2(x

∗
1, z2) + ϕ2(z2), z1 ∈ X1, z2 ∈ X2.

By virtue of separability of function Φ(v, w) and modularity of set Ω the last inequality
can be splitted on a system of inequalities

f1(x
∗
1, x

∗
2) + ϕ1(x

∗
1) ≤ f2(z1, x

∗
2) + ϕ1(z1) ∀z1 ∈ X1,

f2(x
∗
1, x

∗
2) + ϕ2(x

∗
2) ≤ f2(x

∗
1, z2) + ϕ2(z2) ∀z2 ∈ X2,

i.e any �xed point (4) is the solution (2). The inverse proposition is true too.
If game (2) satis�es the condition f1(x1, x2) + ϕ1(x1) + f2(x1, x2) + ϕ2(x2) =

= 0 ∀x1 ∈ X1, x2 ∈ X2, then it is called a zero sum game. It follows from this
condition immediately that f1(x1, x2) = −f2(x1, x2) = f(x1, x2), ϕ1(x1) = 0, ϕ2(x1) =
= 0 ∀x1 ∈ X1, x2 ∈ X2, i.e.

x∗1 ∈ Argmin{ f(z1, x
∗
2) | z1 ∈ X1},

x∗2 ∈ Argmin{−f(x∗1, z2) | z2 ∈ X2}. (5)

Obviously that the problem can be rewritten in the form of a system of inequalities

f(x∗1, z2) ≤ f(x∗1, x
∗
2) ≤ f(z1, x

∗
2) ∀z1 ∈ X1, z2 ∈ X2. (6)

In this case, pair of vectors x∗1, x∗2 is the saddle point of f(x1, x2) on set X1 ×X2.
It is useful to mark that problem (3) also can be interpreted as two person game,

where the strategies of the �rst player are described by means of variable v ∈ Ω,
and second one are in variable w ∈ Ω. The choice of strategy of the �rst player
consists in presentation of speci�c vector v ∈ Ω, the response of the second player is
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in presentation of set Y (v) ⊂ Ω. In this situation it is required to choice v = v∗ such
that v∗ ∈ Y (v∗).

We have seen if v∗ = (x∗1, x
∗
2) is a �xed point in (3), then the pair of vectors (x∗1, x

∗
2)

is the saddle point of function f(x1, x2) in (5).
Antipin 2001B exhibits that the saddle point property is the key property to prove

the convergence of various methods to �xed points of extreme maps. Therefore the
question arises on whether can pair v∗, v∗ be a saddle point some function connected
with this problem, if v∗ is a solution of (3) ? To answer this question we enter a
condition, which is enough to describe the situation as a whole.

A function Φ(v, w) is called positive semi-de�nite or skew-symmetric on Ω× Ω if
it obeys the inequality, Antipin 1995

Φ(w, w)− Φ(w, v)− Φ(v, w) + Φ(v, v) ≥ 0 ∀v, w ∈ Ω× Ω. (7)

This condition can be considered, on the one hand, as generalization of antisymmetric
property, i.e. when the condition Φ(v, w) = −Φ(w, v) is held, and on the other hand, as
generalization of concept of positive semi-de�niteness of matrices. Indeed, if a function
has a bilinear structure Φ(v, w) = 〈Φv, w〉, where Φ is a square matrix, then condition
(7) takes the form of positive semi-de�niteness for matrix, i.e. 〈Φ(v − w), v − w〉 ≥
≥ 0 ∀(v−w) ∈ Rn. Easy to check up that if function Φ(v, w) is positive semi-de�nite,
then Φ(v, w) + ϕ(w) is positive semi-de�nite as well. Positive semi-de�nite condition
(7) allows to mark out the class of equilibrium problems which may be considered as
analog of classes of convex and saddle point programming problems.

The equilibrium problems subjected to the condition of positive semi-de�niteness
have the important properties, namely, if v∗ is a solution of equilibrium problem (3),
then the pair v∗, v∗ is the saddle point of shift function Ψ(v, w) = Φ(v, w) + ϕ(w)−
−Φ(v, v) − ϕ(v) (it is identically equal to zero on the diagonal of square Ω × Ω).
Indeed, if v∗ is a solution, then at v = v∗ from (4) and (7) we have

Φ(w,w) + ϕ(w)− Φ(w, v∗)− ϕ(v∗) ≥ Φ(v∗, w) + ϕ(w)− Φ(v∗, v∗)− ϕ(v∗) ≥ 0

for all w ∈ Ω. Thence

Ψ(v, v∗) ≤ Ψ(v∗, v∗) ≤ Ψ(v∗, w) ∀v, w ∈ Ω× Ω. (8)

Thus, the v∗, v∗ is the saddle point for the shift function Ψ(v, w). This function is
convex in w and, generally speaking, is not concave in v. Below we shall show that
saddle point condition of function Ψ(v, w) is crucial property in the substantiation of
convergence for many iterative methods to a equilibrium solution of (3).

The v∗, v∗ may be a saddle point for another functions, too, for example, for
Ψ1(v, w) = 〈∇2Φ(v, v), w − v〉, where ∇2Φ(v, w) is partial gradient Φ(v, w) in w
for any v. The last function is very convenient to use it for the substantiation of
convergence for gradient-type methods. Therefore we prove this property.
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In this paper the function Φ(v, w) + ϕ(w) is supposed to be convex in w for any
v, i.e. it subjects to the system of inequalities

〈∇f(x), y − x〉 ≤ f(y)− f(x) ≤ 〈∇f(y), y − x〉 (9)

for all x è y from a set. We use this system of inequalities for (7) for the case Φ(v, w)+
+ϕ(w)

Φ(w, w) + ϕ(w)− Φ(w, v)− ϕ(v)− Φ(v, w)− ϕ(w) + Φ(v, v) + ϕ(v) ≥ 0 (10)

for all v, w ∈ Ω× Ω, then we get

〈∇2Φ(w, w) +∇ϕ(w)−∇2Φ(v, v) +∇ϕ(v), w − v〉 ≥ 0 ∀w, v ∈ Ω× Ω, (11)

i.e. gradient-restriction (∇2Φ(v, w) + ∇ϕ(w))|v=w is the monotone operator on the
diagonal of square Ω × Ω. We shall write out a necessary condition for problem (3)
in the form of variational inequality

〈∇2Φ(v∗, v∗) +∇ϕ(v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω. (12)

Let us set v = v∗ in (11) and compare with (12), then

〈∇2Φ(w,w) +∇ϕ(w), w − v∗〉 ≥ 0 ∀w ∈ Ω. (13)

Under notation of function Ψ1(v, w) = 〈∇2Φ(v, v), w−v〉 both inequalities can be
recorded in the form of a saddle point condition

Ψ1(v, v∗) ≤ Ψ1(v
∗, v∗) ≤ Ψ1(v

∗, w) ∀v, w ∈ Ω× Ω.

Hereinafter, we shall assume that objective function Φ(v, w) + ϕ(w) of (3) has two
main properties: it is convex in w for any v, and Φ(v, w) is positive semi-de�nite. Both
properties guarantee the existence of saddle point property for a point v∗, v∗ that, in
turn, provides convergence of majority iterative processes to equilibrium solutions.

The above reasoning are correct provided that the function Φ(v, w) is positive
semi-de�nite. In case it is not so, it is true that any function always can be resulted
to the positive semi-de�nite kind. The latter circumstance is very important, as it
has universal character. We show that any function Φ(v, w) can be splitted on two
components: symmetric and antisymmetric.

We select two linear subspaces in the linear space of the real-valued functions
Φ(v, w), which are determined by the following conditions

Φ(v, w)− Φ(w, v) = 0 ∀w ∈ Ω, ∀v ∈ Ω, (14)
Φ(v, w) + Φ(w, v) = 0 ∀w ∈ Ω, ∀v ∈ Ω. (15)

The functions of the �rst subspace are called symmetric; those of the second class,
anti-symmetric.
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Recall that a pair of points with coordinates w, v and v, w is situated symmetrically
concerning the diagonal of the square Ω×Ω, i.e., with respect to the linear manifold
v = w. This allows us to introduce the concept of a transposed function, Antipin
1998. If we assign the value of Φ(w, v) calculated at the point w, v to every point
with coordinates v, w, that is v, w → Φ(w, v), then we obtain the transposed function
Φ>(v, w) = Φ(w, v). In terms of this function conditions (14) and (15) look like

Φ(v, w) = Φ>(v, w), Φ(v, w) = −Φ>(v, w).

Using the obvious relations Φ(v, w) = (Φ>(v, w))>, (Φ1(v, w) + Φ2(v, w))> =
= Φ>

1 (v, w) + Φ>
2 (v, w), we can readily verify that any real function Φ(v, w) can

be represented as the sum
Φ(v, w) = S(v, w) + K(v, w), (16)

where S(v, w) and K(v, w) are symmetric and antisymmetric functions, respectively.
This expansion is unique

S(v, w) =
1

2

(
Φ(v, w) + Φ>(v, w)

)
, K(v, w) =

1

2

(
Φ(v, w)− Φ>(v, w)

)
. (17)

Antipin 1998 had shown that the gradient-restriction ∇2S(v, w)|v=w coincides
with the gradient (1/2)∇S(v, v) of the restriction for symmetric function S(v, v) =
= S(v, w)|v=w. The latter means that alongside with the function Φ(v, w) + ϕ(w) it
always is possible to introduce other function K(v, w) + S(w,w) + ϕ(w) = K(v, w)+
+ϕ1(w) such that gradient-restrictions of both functions are the same, and K(v, w)
is a positive semi-de�nite function. Thus, if it is assumed that Φ(v, w) + ϕ(w) is not
positive semi-de�nite function, then there always exists an other positive semi-de�nite
function K(v, w) + ϕ1(w) such that the gradient-restrictions for the both functions
are the same and, certainly, a solution sets of both equilibrium problem generated
both functions are the same as well. Therefore, it is possible approve that the positive
semi-de�niteness condition is not restraining very much, though under transition from
one function to other there will be di�culties with ful�lment of the second condition:
convexity condition of K(v, w) + ϕ1(w) in w for any v.

3 Extragradient game methods
In game (2) each of the participants has to decide a minimization problem with convex
functions in own variable under �xed values of parameters, which are simultaneously
variables for each contenders. There is the question, when methods developed for
solving convex problems can be transferred for solving a system of such problems.

First of all we note that the game (2) has several equivalent formulations. For
example, in the form of variational inequalities

〈∇1f1(x
∗
1, x

∗
2) + ∇ϕ1(x

∗
1), z1 − x∗1〉 ≥ 0 ∀z1 ∈ X1,

〈∇2f2(x
∗
1, x

∗
2) + ∇ϕ2(x

∗
2), z2 − x∗2〉 ≥ 0 ∀z2 ∈ X2,

(18)
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or in the kind of operator equations

x∗1 = πX1(x
∗
1 − α(∇1f1(x

∗
1, x

∗
2) +∇ϕ1(x

∗
1))),

x∗2 = πX2(x
∗
2 − α(∇2f2(x

∗
1, x

∗
2) +∇ϕ2(x

∗
2))).

(19)

where ∇1f1(x1, x2), ∇2f2(x1, x2) are partial derivatives of functions f1(x1, x2) and
f2(x1, x2) in �rst and second variables accordingly, ∇ϕ1(x1), ∇ϕ2(x2) are gradients of
appropriate functions, πXi

(. . .), i = 1, 2, are projection operators of vectors onto a set
Xi, α > 0 is a parameter like steplength. Conditions (18), (19) represent necessary,
and in the convex case, su�cient conditions of a minimum in (2). Recall that the
solution set of positive semi-de�nite equilibrium (game) problems introduced above
is convex closed set, Antipin 2002

For the solution of system (19) the extragradient method is used. It includes two
half-steps Antipin 1998

the �rst half-step

x̄n
1 = πX1(x

n
1 − α(∇1f1(x

n
1 , x

n
2 ) +∇ϕ1(x

n
1 ))),

x̄n
2 = πX2(x

n
2 − α(∇2f2(x

n
1 , x

n
2 ) +∇ϕ2(x

n
2 ))),

(20)

and second half-step

xn+1
1 = πX1(x

n
1 − α(∇1f1(x̄

n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 ))),

xn+1
2 = πX2(x

n
2 − α(∇2f2(x̄

n
1 , x̄

n
2 ) +∇ϕ2(x̄

n
2 ))).

(21)

A steplength α > 0 in this process is determined from some condition, which will be
mentioned below. The �rst half-step is treated as a calculation of prediction point
where direction of the future motion can be determined and then the second half-step
implements the motion in computed direction.

Note that the ordinary gradient method like type

xn+1
1 = πX1(x

n
1 − α(∇1f1(x

n
1 , x

n
2 ) +∇ϕ1(x

n
1 ))),

xn+1
2 = πX2(x

n
2 − α(∇2f2(x

n
1 , x

n
2 ) +∇ϕ2(x

n
2 )))

does not converge to a solution of (19). But, in the particular case, if the operator

∇2Φ(v, w)|v=w = (∇1f1(x1, x2),∇2f2(x1, x2))

is potential (i.e. Jacobian of ∇2Φ(v, v) is the symmetric matrix), then the ordinary
gradient method is converging, Rosen 1965. In this case the equilibrium problem is
equivalent to optimization problem, Antipin 2001B.

From (20), (21) we have estimates

|x̄n
1 − xn+1

1 | ≤ α|∇1f1(x
n
1 , x

n
2 ) +∇ϕ1(x

n
1 )−∇1f1(x̄

n
1 , x̄

n
2 )−∇ϕ1(x̄

n
1 )|,

|x̄n
2 − xn+1

2 | ≤ α|∇2f2(x
n
1 , x

n
2 ) +∇ϕ2(x

n
2 )−∇2f2(x̄

n
1 , x̄

n
2 )−∇ϕ2(x̄

n
2 )|. (22)
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We present process (20), (21) in the form of variational inequalities. Equation (20)
rewrites accordingly with de�nition of the projection operator as

〈x̄n
1 − xn

1 + α(∇1f1(x
n
1 , x

n
2 ) +∇ϕ1(x

n
1 )), z1 − x̄n

1 〉 ≥ 0 ∀z1 ∈ X1,
〈x̄n

2 − xn
2 + α(∇2f2(x

n
1 , x

n
2 ) +∇ϕ2(x

n
2 )), z2 − x̄n

2 〉 ≥ 0 ∀z2 ∈ X2.
(23)

Equation (21) presents as well as

〈xn+1
1 − xn

1 + α(∇1f1(x̄
n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 )), z1 − xn+1

1 〉 ≥ 0 ∀z1 ∈ X1,
〈xn+1

2 − xn
2 + α(∇2f2(x̄

n
1 , x̄

n
2 ) +∇ϕ2(x̄

n
2 )), z2 − xn+1

2 〉 ≥ 0 ∀z2 ∈ X2.
(24)

Under discussing questions of convergence of game method (20), (21) it is impor-
tant to underline that two players are a whole system, which in due course evolves to
equilibrium state and character of this evolution is determined, in main, by system
properties, i.e. system properties of the players, as a whole unit. These system proper-
ties we formulate in terms of the normalized function.

Φ(v, w) + ϕ(w) = f1(z1, x2) + ϕ1(z1) + f2(x1, z2) + ϕ2(z2), (25)

ãäå w = (z1, z2), v = (x1, x2), v, w ∈ Ω = X1 × X2. They include: the positive
semi-de�nite property of Φ(v, w), the Lipschitz condition of gradient-restriction of
this function and convexity property of Φ(v, w) in w for any v. Certainly, all these
properties, in turn, are determined by properties of functions f1(z1, x2), ϕ1(z1), f2(x1,
z2), ϕ2(z2). For example, if these functions are convex in z1 and z2 for any values x1

and x2, then Φ(v, w) + ϕ(w) is convex in w for any v.

Theorem 1 Suppose that a solution set of game (2) is non-empty, normalized func-
tion of this game Φ(v, w) + ϕ(w) is positive semi-de�nite and convex in w for any
v, its gradient-restriction ∇2Φ(v, w)|v=w + ∇ϕ(w) satis�es the Lipschitz condition
with constant L, Ω ⊆ Rn is convex closed set. Then, the sequence xn

1 , x
n
2 generated

by method (20), (21) with steplength α chosen from condition 0 < α < 1/(
√

2L)
converges to a game solution, i.e. xn

1 , x
n
2 → x∗1, x

∗
2 as n → ∞ monotonically in the

norm.

Proof. By putting z1 = x∗1, z2 = x∗2 in (24), then

〈xn+1
1 − xn

1 + α(∇1f1(x̄
n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 )), x∗1 − xn+1

1 〉 ≥ 0,
〈xn+1

2 − xn
2 + α(∇2f2(x̄

n
1 , x̄

n
2 ) +∇ϕ2(x̄

n
2 )), x∗2 − xn+1

2 〉 ≥ 0.
(26)

By setting z1 = xn+1
1 , z2 = xn+1

2 in (23)

〈x̄n
1 − xn

1 + α(∇1f1(x
n
1 , x

n
2 ) +∇ϕ1(x

n
1 )), xn+1

1 − x̄n
1 〉 ≥ 0,

〈x̄n
2 − xn

2 + α(∇2f2(x
n
1 , x

n
2 ) +∇ϕ2(x̄

n
2 )), xn+1

2 − x̄n
2 〉 ≥ 0.
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From here

〈x̄n
1 − xn

1 , x
n+1
1 − x̄n

1 〉+ α〈∇1f1(x̄
n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 ), xn+1

1 − x̄n
1 〉+

+ α〈∇1f1(x
n
1 , x

n
2 ) +∇ϕ1(x

n
1 )−∇1f1(x̄

n
1 , x̄

n
2 )−∇ϕ1(x̄

n
1 ), xn+1

1 − x̄n
1 〉 ≥ 0

or taking into account of (22)

〈x̄n
1 − xn

1 , x
n+1
1 − x̄n

1 〉+ α〈∇1f1(x̄
n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 ), xn+1

1 − x̄n
1 〉+

+ α2|∇1f1(x
n
1 , x

n
2 ) +∇ϕ1(x

n
1 )−∇1f1(x̄

n
1 , x̄

n
2 )−∇ϕ1(x̄

n
1 )|2 ≥ 0.

(27)

We get analogous inequality with respect to variables z2

〈x̄n
2 − xn

2 , x
n+1
2 − x̄n

2 〉+ α〈∇2f2(x̄
n
1 , x̄

n
2 ) +∇ϕ2(x̄

n
2 ), xn+1

2 − x̄n
2 〉+

+ α2|∇2f2(x
n
1 , x

n
2 ) +∇ϕ2(x

n
2 )−∇2f2(x̄

n
1 , x̄

n
2 )−∇ϕ2(x̄

n
2 )|2 ≥ 0.

(28)

We add systems pair of inequalities (26) and (27),(28)

〈xn+1
1 − xn

1 , x
∗
1 − xn+1

1 〉+ 〈x̄n
1 − xn

1 , x
n+1
1 − x̄n

1 〉+
+ 〈xn+1

2 − xn
2 , x

∗
2 − xn+1

2 〉+ 〈x̄n
2 − xn

2 , x
n+1
2 − x̄n

2 〉+
+ α〈∇1f1(x̄

n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 ), x∗1 − x̄n

1 〉+
+ α〈∇2f2(x̄

n
1 , x̄

n
2 ) +∇ϕ2(x̄

n
2 ), x∗2 − x̄n

2 〉+
+ α2|∇1f1(x

n
1 , x

n
2 ) +∇ϕ1(x

n
1 )−∇1f1(x̄

n
1 , x̄

n
2 )−∇ϕ1(x̄

n
1 )|2+

+ α2|∇2f2(x
n
1 , x

n
2 ) +∇ϕ2(x

n
2 )−∇2f2(x̄

n
1 , x̄

n
2 )−∇ϕ2(x̄

n
2 )|2 ≥ 0.

(29)

Represent (29) in the vector form

(xn+1
1 − xn

1 , x
n+1
2 − xn

2 )

(
x∗1 − xn+1

1

x∗2 − xn+1
2

)
+ (x̄n

1 − xn
1 , x̄

n
2 − xn

2 )

(
xn+1

1 − x̄n
1

xn+1
2 − x̄n

2

)
+

+ (∇1f1(x̄
n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 ),∇2f2(x̄

n
1 , x̄

n
2 ) +∇ϕ2(x̄

n
2 ))

(
x∗1 − x̄n

1

x∗2 − x̄n
2

)
+

+ α2|∇1f1(x
n
1 , x

n
2 ) +∇ϕ1(x

n
1 )−∇1f1(x̄

n
1 , x̄

n
2 )−∇ϕ1(x̄

n
1 )|2+

+ α2|∇2f2(x
n
1 , x

n
2 ) +∇ϕ2(x

n
2 )−∇2f2(x̄

n
1 , x̄

n
2 )−∇ϕ2(x̄

n
2 )|2 ≥ 0.

Recall notations for vectors introduced previous to v =

(
x1

x2

)
, v∗ =

(
x∗1
x∗2

)
. If

we di�erentiate function Φ(v, w) + ϕ(w) in w for any v and take the restriction of
gradient for this function onto the diagonal of square Ω× Ω, (i.e. at v = w) then we
get from (25)

∇2Φ(v, w)|v=w +∇ϕ(w) =

(
∇1f1(z1, x2)
∇2f2(x1, z2)

)

z1=x1,z2=x2

+

(
∇ϕ1(z1)
∇ϕ2(z2)

)
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In particular, at z1 = x̄n
1 , z2 = x̄n

2 we have

∇2Φ(v̄n, v̄n) +∇ϕ(v̄n) =

(
∇1f1(x̄

n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 )

∇2f2(x̄
n
1 , x̄

n
2 ) +∇ϕ2(x̄

n
2 )

)
(30)

In view of entered notations we copy the last inequality in the form

〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+
+ α〈∇2Φ(v̄n, v̄n) +∇ϕ(v̄n), v∗ − v̄n〉+
+ α2|∇2Φ(vn, vn) +∇ϕ(vn)−∇2Φ(v̄n, v̄n)−∇ϕ(v̄n)|2 ≥ 0.

(31)

If operator ∇2Φ(v, v), ∇ϕ(v) satis�es the Lipschitz condition, then the estimate is
correct

|∇2Φ(vn, vn) +∇ϕ(vn)−∇2Φ(v̄n, v̄n)−∇ϕ(v̄n)| ≤ L|vn − v̄n|

On the other hand, third addend from (31) is nonpositive by virtue of estimation (13)
at w = v̄n. With regard for above inequality (31) takes the one

〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+ (αL)2|vn − v̄n|2 ≥ 0. (32)

By means of identity

|v1 − v3|2 = |v1 − v2|2 + 2〈v1 − v2, v2 − v3〉+ |v2 − v3|2, (33)

we split of the �rst two scalar products in (32)

|vn+1 − v∗|2 + |vn+1 − v̄n|2 + |v̄n − vn|2+
+2(αL)2|v̄n − vn)|2 ≤ |vn − v∗|2.

From here, we yield

|vn+1 − v∗|2 + |vn+1 − v̄n|2 + (1− 2(αL)2)|v̄n − vn|2 ≤ |vn − v∗|2. (34)

Let us sum up inequality obtained from n = 0 to n = N

|vN+1 − v∗|2 +
k=N∑

k=0

|vk+1 − v̄k|2 + d
k=N∑

k=0

|v̄k − vk|2 ≤ |v0 − v∗|2,

where d = 1− 2(αL)2 > 0 under the theorem conditions. From the gained inequality
the boundedness of trajectory follows

|vN+1 − v∗|2 ≤ |v0 − v∗|2,

and the series are convergent
∞∑

k=0
|vk+1− v̄k|2 < ∞,

∞∑
k=0

|v̄k − vk|2 < ∞. Consequently,
values tend to zero |vn+1 − v̄n|2 → 0, |v̄n − vn|2 → 0, n → ∞. We have too that the
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sequence vn is limited. It means, there exists a point v′ such that vni → v′ as ni →∞,
and |vni+1 − vni|2 → 0, |v̄ni − vni|2to0.

We put n = ni in (23) or (24) and passing to the limit as ni →∞, we get

〈∇1f1(x
′
1, x

′
2) +∇ϕ1(x

′
1), z1 − x′1〉 ≥ 0 ∀z1 ∈ X1,

〈∇2f2(x
′
1, x

′
2) +∇ϕ2(x

′
2), z2 − x′2〉 ≥ 0 ∀z2 ∈ X2.

The obtained ratios are similar (18), therefore x′1, x
′
2 = x∗1, x

∗
2, i.e. any limiting

point of sequence xn
1 , x

n
2 is a solution of problem. The monotonicity condition for

decrease of value |vn−v∗| guarantees the uniqueness of the limit point, i.e. convergence
provides vn = (xn

1 , x
n
2 ) → v∗ = (x∗1, x

∗
2) as n →∞. The theorem is proved.

4 Extragradient game methods using Lagrange
function

We consider now convex two person non-zero sum game, where each players of the
game has, in addition, functional constraints

x∗1 ∈ Argmin{f1(z1, x
∗
2) + ϕ1(z1) | g1(z1) ≤ 0, z1 ∈ X1},

x∗2 ∈ Argmin{f2(x
∗
1, z2) + ϕ2(z2) | g2(z2) ≤ 0, z2 ∈ X2}. (35)

Each of participants of the game decides a convex programming problem in an own
variable at �xed values parameters. We introduce the Lagrange functions for each of
the players. These functions depend on parameters v = (x1, x2)

L1(z1, x2, p1) = f1(z1, x2) + ϕ1(z1) + 〈p1, g1(z1)〉 ∀z1 ∈ X1, p1 ≥ 0,
L2(x1, z2, p2) = f2(x1, z2) + ϕ2(z2) + 〈p2, g2(z2)〉 ∀z2 ∈ X2, p2 ≥ 0.

(36)

We assume that under equilibrium conditions, i.e. at x1 = x∗1, x2 = x∗2 points x∗1, p
∗
1

and x∗2, p
∗
2 are saddle points for Lagrange functions L1(z1, x

∗
2, p1) and L2(x

∗
1, z2, p2).

The latter means that inequality system is held

L1(x
∗
1, x

∗
2, p1) ≤ L1(x

∗
1, x

∗
2, p

∗
1) ≤ L1(z1, x

∗
2, p

∗
1) ∀z1 ≥ 0, ∀p1 ≥ 0, (37)

L2(x
∗
1, x

∗
2, p2) ≤ L2(x

∗
1, x

∗
2, p

∗
2) ≤ L2(x

∗
1, z2, p

∗
2) ∀z2 ≥ 0, ∀p2 ≥ 0. (38)

We rewrite inequalities (37), (38) in the form of the system of problems

x∗1 ∈ Argmin{f1(z1, x
∗
2) + ϕ1(z1) + 〈p∗1, g1(z1)〉 | ∀z1 ∈ X1},

p∗1 ∈ Argmax{〈p1, g1(x
∗
1)〉 | p1 ≥ 0}, (39)

x∗2 ∈ Argmin{f2(x
∗
1, z2) + ϕ2(z2) + 〈p∗2, g2(z2)〉 | ∀z2 ∈ X2},

p∗2 ∈ Argmax{〈p2, g2(x
∗
2)〉 | p2 ≥ 0} (40)
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or in the form of variational inequalities

〈∇1f1(x
∗
1, x

∗
2) +∇ϕ1(x

∗
1) +∇g>1 (x∗1)p

∗
1, z1 − x∗1〉 ≥ 0 ∀z1 ∈ X1,

−〈g1(x
∗
1), p1 − p∗1〉 ≥ 0 ∀p1 ≥ 0,

〈∇2f2(x
∗
1, x

∗
2) +∇ϕ2(x

∗
2) +∇g>2 (x∗2)p

∗
2, z2 − x∗2〉 ≥ 0 ∀z2 ∈ X2,

−〈g2(x
∗
2), p2 − p∗2〉 ≥ 0 ∀p2 ≥ 0,

(41)

where ∇g>1 (x1), ∇g>2 (x2) are m1 × n and m2 × n matrices, and ∇g1,i(x1),
∇g2,j(x2), i = 1, 2, . . . , m1, j = 1, 2, . . . , m2 are vector-lines.

We di�erentiate the Lagrange functions (36) in w = (z1, z2)

∇1L1(z1, x2, p1) = ∇1f1(z1, x2) +∇ϕ1(z1) +∇g>1 (z1)p1,
∇2L2(x1, z2, p2) = ∇2f2(x1, z2) +∇ϕ2(z2) +∇g>2 (z2)p2,

(42)

and present the system of variational inequalities (41) in the equivalent form of
operator equations

x∗1 = πX1(x
∗
1 − α(∇1L1(x

∗
1, x

∗
2, p

∗
1)), p∗1 = π+(p∗1 + αg1(x

∗
1)),

x∗2 = πX2(x
∗
2 − α(∇2L2(x

∗
1, x

∗
2, p

∗
2)), p∗2 = π+(p∗2 + αg2(x

∗
2)),

(43)

where π+(. . .) is projection operator of some vector into the positive orthant Rn
+,

α > 0 is a parameter like steplength.
For the solution of system (43) we use the extragradient method with respect to

primal and dual variables, Antipin 1997, Antipin 2000, Antipin 2001A. The method
includes two half steps:

the �rst half-step

p̄n
1 = π+(pn

1 + αg1(x
n
1 )), x̄n

1 = πX1(x
n
1 − α∇1L1(x

n
1 , x

n
2 , p̄

n
1 )),

p̄n
2 = π+(pn

2 + αg2(x
n
2 )), x̄n

2 = πX2(x
n
2 − α∇2L2(x

n
1 , x

n
2 , p̄

n
2 )),

(44)

and second half-step

pn+1
1 = π+(pn

1 + αg1(x̄
n
1 )), xn+1

1 = πX1(x
n
1 − α∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 )),

pn+1
2 = π+(pn

2 + αg2(x̄
n
2 )), xn+1

2 = πX2(x
n
2 − α∇2L2(x̄

n
1 , x̄

n
2 , p̄

n
2 )).

(45)

The steplength α in (44), (45) is determined from a interval 0 < α < α0, where
right-hand side of this segment will be determined later.

For the justi�cation of correctness of selecting out parameter α we receive evalua-
tions of deviations for vectors x̄n

1 , x̄
n
2 and xn+1

1 , xn+1
2 and p̄n

1 , p̄
n
2 and pn+1

1 , pn+1
2 from

(44), (45)
|p̄n

1 − pn+1
1 | ≤ α|g1(x

n
1 )− g1(x̄

n
1 )|,

|p̄n
2 − pn+1

2 | ≤ α|g2(x
n
2 )− g2(x̄

n
2 )|,

|x̄n
1 − xn+1

1 | ≤ α|∇1L1(x
n
1 , x

n
2 , p̄

n
1 )−∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 )|,

|x̄n
2 − xn+1

2 | ≤ α|∇2L2(x
n
1 , x

n
2 , p̄

n
2 )−∇2L2(x̄

n
1 , x̄

n
2 , p̄

n
2 )|.

(46)
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We rewrite process (44), (45) in the form of variational inequalities. According
with the de�nition of projection operator we present equations from (44) in the kind

〈p̄n
1 − pn

1 − αg1(x
n
1 ), p1 − p̄n

1 〉 ≥ 0 ∀p1 ≥ 0,
〈p̄n

2 − pn
2 − αg2(x

n
2 ), p2 − p̄n

2 〉 ≥ 0 ∀p2 ≥ 0
(47)

and
〈x̄n

1 − xn
1 + α∇1L1(x

n
1 , x

n
2 , p̄

n
1 ), z1 − x̄n

1 〉 ≥ 0 ∀z1 ∈ X1,
〈x̄n

2 − xn
2 + α∇2L2(x

n
1 , x

n
2 , p̄

n
2 ), z2 − x̄n

2 〉 ≥ 0 ∀z2 ∈ X2.
(48)

We rewrite equations (45) as

〈pn+1
1 − pn

1 − αg1(x̄
n
1 ), p1 − pn+1

1 〉 ≥ 0 ∀p1 ≥ 0,
〈pn+1

2 − pn
2 − αg2(x̄

n
2 ), p2 − pn+1

2 〉 ≥ 0 ∀p2 ≥ 0
(49)

and
〈xn+1

1 − xn
1 + α∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 ), z1 − xn+1

1 〉 ≥ 0 ∀z1 ∈ X1,
〈xn+1

2 − xn
2 + α∇2L2(x̄

n
1 , x̄

n
2 , p̄

n
2 ), z2 − xn+1

2 〉 ≥ 0 ∀z2 ∈ X2.
(50)

In theorem 1 we used inequality (13), which is the corollary of monotonicity
property for gradient-restriction ∇2Φ(v, v) + ∇ϕ(v). In the considered situation we
generalize this inequality for the case when functional constraints of equilibrium
problem are taking into account by means of Lagrange functions. To this end we
put z1 = x̄n

1 , z2 = x̄n
2 in the �rst and third inequalities (41)

〈∇1f1(x
∗
1, x

∗
2) +∇ϕ1(x

∗
1) +∇g>1 (x∗1)p

∗
1, x̄

n
1 − x∗1〉 ≥ 0,

〈∇2f2(x
∗
1, x

∗
2) +∇ϕ2(x

∗
2) +∇g>2 (x∗2)p

∗
2, x̄

n
2 − x∗2〉 ≥ 0.

From here
〈∇1f1(x

∗
1, x

∗
2) +∇ϕ1(x

∗
1), x̄

n
1 − x∗1〉+ 〈p∗1,∇g1(x

∗
1)(x̄

n
1 − x∗1)〉 ≥ 0,

〈∇2f2(x
∗
1, x

∗
2) +∇ϕ2(x

∗
2), x̄

n
2 − x∗2〉+ 〈p∗2,∇g2(x

∗
2)(x̄

n
2 − x∗2)〉 ≥ 0.

Using the convexity of vector functions g1(x1), g2(x2), we add both inequalities

〈∇1f1(x
∗
1, x

∗
2) +∇ϕ1(x

∗
1), x̄

n
1 − x∗1〉+ 〈∇2f2(x

∗
1, x

∗
2) +∇ϕ2(x

∗
2), x̄

n
2 − x∗2〉+

+ 〈p∗1, g1(x̄
n
1 )− g1(x

∗
1)〉+ 〈p∗2, g2(x̄

n
2 )− g2(x

∗
2)〉 ≥ 0.

(51)

We use the obtained estimate in proving the following

Theorem 2 Suppose that a solution set of game (35) is non-empty, Lagrange function
of each player has got a saddle point, normalized function of this game Φ(v, w)+
+ϕ(w) is positive semide�nite and convex in w for any v, its gradient-restriction
∇2Φ(v, w)|v=w +∇ϕ(w) satis�es the Lipschitz condition with constant L1, vector and
matrix functions g(w), ∇g>(w) satisfy the Lipschitz conditions with constants L3 è
L2, sequence p̄n ≤ C is limited for all n, Ω ⊆ Rn is convex closed set. Then, the
sequence xn

1 , x
n
2 , pn

1 , p
n
2 , generated by method (44), (45) with steplength α chosen from

condition 0 < α < 1/(
√

2(L2
1 + (CL2)2) + L2

3 converges to a game solution, i.e. ò.å.
xn

1 , x
n
2 → x∗1, x

∗
2, pn

1 , p
n
2 → p∗1, p

∗
2 as n →∞ monotonically in the norm.
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Proof. We put z1 = x∗1, z2 = x∗2 in (50), then

〈xn+1
1 − xn

1 + α∇1L1(x̄
n
1 , x̄

n
2 , p̄

n
1 ), x∗1 − xn+1

1 〉 ≥ 0,

〈xn+1
2 − xn

2 + α∇2L2(x̄
n
1 , x̄

n
2 , p̄

n
2 ), x∗2 − xn+1

2 〉 ≥ 0.
(52)

We set z1 = xn+1
1 , z2 = xn+1

2 in (48)

〈x̄n
1 − xn

1 + α∇1L1(x
n
1 , x

n
2 , p̄

n
1 ), xn+1

1 − x̄n
1 〉 ≥ 0,

〈x̄n
2 − xn

2 + α∇2L2(x
n
1 , x

n
2 , p̄

n
2 ), xn+1

2 − x̄n
2 〉 ≥ 0.

(53)

Hence

〈x̄n
1 − xn

1 , x
n+1
1 − x̄n

1 〉+ α〈∇1L1(x̄
n
1 , x̄

n
2 , p̄

n
1 ), xn+1

1 − x̄n
1 〉+

+ α〈∇1L1(x
n
1 , x

n
2 , p̄

n
1 )−∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 ), xn+1

1 − x̄n
1 〉 ≥ 0,

taking into account (46), we have

〈x̄n
1 − xn

1 , x
n+1
1 − x̄n

1 〉+ α〈∇1L1(x̄
n
1 , x̄

n
2 , p̄

n
1 ), xn+1

1 − x̄n
1 〉+

+ α2|∇1L1(x
n
1 , x

n
2 , p̄

n
1 )−∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 )|2 ≥ 0.

(54)

We receive the similar inequality with respect to variable z2

〈x̄n
2 − xn

2 , x
n+1
2 − x̄n

2 〉+ α〈∇2L2(x̄
n
1 , x̄

n
2 , p̄

n
2 ), xn+1

2 − x̄n
2 〉+

+ α2|∇2L2(x
n
1 , x

n
2 , p̄

n
2 )−∇2L2(x̄

n
1 , x̄

n
2 , p̄

n
2 )|2 ≥ 0.

(55)

Add systems of pairs of inequalities (52) and (54), (55)

〈xn+1
1 − xn

1 , x
∗
1 − xn+1

1 〉+ 〈x̄n
1 − xn

1 , x
n+1
1 − x̄n

1 〉+
+ 〈xn+1

2 − xn
2 , x

∗
2 − xn+1

2 〉+ 〈x̄n
2 − xn

2 , x
n+1
2 − x̄n

2 〉+
+ α〈∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 ), x∗1 − x̄n

1 〉+ α〈∇2L2(x̄
n
1 , x̄

n
2 , p̄

n
2 ), x∗2 − x̄n

2 〉+
+ α2|∇1L1(x

n
1 , x

n
2 , p̄

n
1 )−∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 )|2+

+ α2|∇2L2(x
n
1 , x

n
2 , p̄

n
2 )−∇2L2(x̄

n
1 , x̄

n
2 , p̄

n
2 )|2 ≥ 0.

In view of convexity g1(x1), g2(x2) we estimate separately the �fth and
sixth term in obtained inequality

〈∇1L1(x̄
n
1 , x̄

n
2 , p̄

n
1 ), x∗1 − x̄n

1 〉+ 〈∇2L2(x̄
n
1 , x̄

n
2 , p̄

n
2 ), x∗2 − x̄n

2 〉 =

= 〈∇1f1(x̄
n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 ), x∗1 − x̄n

1 〉+ 〈∇g>1 (x̄n
1 )p̄n

1 , x
∗
1 − x̄n

1 )〉+
+ 〈∇2f2(x̄

n
1 , x̄

n
2 ) +∇ϕ2(x̄

n
2 ), x∗2 − x̄n

2 〉+ 〈∇g>2 (x̄n
2 )p̄n

2 , x
∗
2 − x̄n

2 〉 ≤
≤ 〈∇1f1(x̄

n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 ), x∗1 − x̄n

1 〉+ 〈p̄n
1 , g1(x

∗
1)− g1(x̄

n
1 )〉+

+ 〈∇2f2(x̄
n
1 , x̄

n
2 ) +∇ϕ2(x̄

n
2 ), x∗2 − x̄n

2 〉+ 〈p̄n
2 , g2(x

∗
2)− g2(x̄

n
2 )〉.
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Then

〈xn+1
1 − xn

1 , x
∗
1 − xn+1

1 〉+ 〈x̄n
1 − xn

1 , x
n+1
1 − x̄n

1 〉+
+ 〈xn+1

2 − xn
2 , x

∗
2 − xn+1

2 〉+ 〈x̄n
2 − xn

2 , x
n+1
2 − x̄n

2 〉+
+ α(〈∇1f1(x̄

n
1 , x̄

n
2 ) +∇ϕ1(x̄

n
1 ), x∗1 − x̄n

1 〉+ 〈p̄n
1 , g1(x

∗
1)− g1(x̄

n
1 )〉)+

+ α(〈∇2f2(x̄
n
1 , x̄

n
2 ) +∇ϕ2(x̄

n
2 ), x∗2 − x̄n

2 〉+ 〈p̄n
2 , g2(x

∗
2)− g2(x̄

n
2 )〉+

+ α2|∇1L1(x
n
1 , x

n
2 , p̄

n
1 )−∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 )|2+

+ α2|∇2L2(x
n
1 , x

n
2 , p̄

n
2 )−∇2L2(x̄

n
1 , x̄

n
2 , p̄

n
2 )|2 ≥ 0.

(56)

Using notations (30), we add inequality (51) and (56), then

〈xn+1
1 − xn

1 , x
∗
1 − xn+1

1 〉+ 〈x̄n
1 − xn

1 , x
n+1
1 − x̄n

1 〉+
+ 〈xn+1

2 − xn
2 , x

∗
2 − xn+1

2 〉+ 〈x̄n
2 − xn

2 , x
n+1
2 − x̄n

2 〉+
+ 〈∇2Φ(v̄n

1 , v̄n
2 ) +∇ϕ(v̄n

1 )−∇2Φ(v∗1, v
∗
2)−∇ϕ(v∗1), v

∗
1 − v̄n

1 〉+
+ 〈p̄n

1 − p∗1, g1(x
∗
1)− g1(x̄

n
1 )〉+ 〈p̄n

2 − p∗2, g2(x
∗
2)− g2(x̄

n
2 )〉+

+ α2|∇1L1(x
n
1 , x

n
2 , p̄

n
1 )−∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 )|2+

+ α2|∇2L2(x
n
1 , x

n
2 , p̄

n
2 )−∇2L2(x̄

n
1 , x̄

n
2 , p̄

n
2 )|2 ≥ 0.

(57)

To the obtained inequality we return back later and now consider inequalities (47)
and (49). Let us put p1 = p∗1, p2 = p∗2 in (49)

〈pn+1
1 − pn

1 , p
∗
1 − pn+1

1 〉 − α〈g1(x̄
n
1 ), p∗1 − pn+1

1 〉 ≥ 0,

〈pn+1
2 − pn

2 , p
∗
2 − pn+1

2 〉 − α〈g2(x̄
n
2 ), p∗2 − pn+1

2 〉 ≥ 0
(58)

and p1 = pn+1
1 , p2 = pn+1

2 in (47), then

〈p̄n
1 − pn

1 , p
n+1
1 − p̄n

1 〉+ α〈g1(x̄
n
1 )− g1(x

n
1 ), pn+1

1 − p̄n
1 〉−

− α〈g1(x̄
n
1 ), pn+1

1 − p̄n
1 〉 ≥ 0,

〈p̄n
2 − pn

2 , p
n+1
2 − p̄n

2 〉+ α〈g2(x̄
n
2 )− g2(x

n
2 ), pn+1

2 − p̄n
2 〉−

− α〈g2(x̄
n
2 ), pn+1

2 − p̄n
2 〉 ≥ 0.

(59)

We combine both inequalities (58) and (59)

〈pn+1
1 − pn

1 , p
∗
1 − pn+1

1 〉+ 〈pn+1
2 − pn

2 , p
∗
2 − pn+1

2 〉+
+ 〈p̄n

1 − pn
1 , p

n+1
1 − p̄n

1 〉+ 〈p̄n
2 − pn

2 , p
n+1
2 − p̄n

2 〉+
+ α〈g1(x̄

n
1 )− g1(x

n
1 ), pn+1

1 − p̄n
1 〉+ α〈g2(x̄

n
2 )− g2(x

n
2 ), pn+1

2 − p̄n
2 〉−

− α〈g1(x̄
n
1 ), p∗1 − p̄n

1 〉 − α〈g2(x̄
n
2 ), p∗2 − p̄n

2 〉 ≥ 0.
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Using (46), rewrite the last inequality in the kind

〈pn+1
1 − pn

1 , p
∗
1 − pn+1

1 〉+ 〈pn+1
2 − pn

2 , p
∗
2 − pn+1

2 〉+
+ 〈p̄n

1 − pn
1 , p

n+1
1 − p̄n

1 〉+ 〈p̄n
2 − pn

2 , p
n+1
2 − p̄n

2 〉+
+ α2|g1(x̄

n
1 )− g1(x

n
1 )|2 + α2|g2(x̄

n
2 )− g2(x

n
2 )|2−

− α〈g1(x̄
n
1 ), p∗1 − p̄n

1 〉 − α〈g2(x̄
n
2 ), p∗2 − p̄n

2 〉 ≥ 0.

(60)

We put p1 = p̄n
1 , p2 = p̄n

2 in second and fourth inequalities (41) and add both ones
to (60), then

〈pn+1
1 − pn

1 , p
∗
1 − pn+1

1 〉+ 〈pn+1
2 − pn

2 , p
∗
2 − pn+1

2 〉+
+ 〈p̄n

1 − pn
1 , p

n+1
1 − p̄n

1 〉+ 〈p̄n
2 − pn

2 , p
n+1
2 − p̄n

2 〉+
+ α2|g1(x̄

n
1 )− g1(x

n
1 )|2 + α2|g2(x̄

n
2 )− g2(x

n
2 )|2+

+ α〈g1(x
∗
1)− g1(x̄

n
1 ), p∗1 − p̄n

1 〉+ α〈g2(x
∗
2)− g2(x̄

n
2 ), p∗2 − p̄n

2 〉 ≥ 0.

(61)

At last, we combine inequalities (57) and (61) and take into account the monotoni-
city condition (11) of the operator ∇2Φ(v, v) +∇ϕ(v), then

〈xn+1
1 − xn

1 , x
∗
1 − xn+1

1 〉+ 〈x̄n
1 − xn

1 , x
n+1
1 − x̄n

1 〉+
+ 〈xn+1

2 − xn
2 , x

∗
2 − xn+1

2 〉+ 〈x̄n
2 − xn

2 , x
n+1
2 − x̄n

2 〉+
+ 〈pn+1

1 − pn
1 , p

∗
1 − pn+1

1 〉+ 〈pn+1
2 − pn

2 , p
∗
2 − pn+1

2 〉+
+ 〈p̄n

1 − pn
1 , p

n+1
1 − p̄n

1 〉+ 〈p̄n
2 − pn

2 , p
n+1
2 − p̄n

2 〉+
+ α2|∇1L1(x

n
1 , x

n
2 , p̄

n
1 )−∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 )|2+

+ α2|∇2L2(x
n
1 , x

n
2 , p̄

n
2 )−∇2L2(x̄

n
1 , x̄

n
2 , p̄

n
2 )|2+

+ α2|g1(x̄
n
1 )− g1(x

n
1 )|2 + α2|g2(x̄

n
2 )− g2(x

n
2 )|2 ≥ 0.

(62)

Further, following logic to the theorem 1, we scalarized the obtained inequality
and pass to the variables v = (x1, x2)

>, p = (p1, p2)
>. To this end we consider three

last addends in (62) in more details. We expand convolution (25) with the help of
scalarization of two Lagrange functions (36)

L(v, w, p) = Φ(v, w) + ϕ(w) + 〈p, g(w)〉 = L1(z1, x2, p1) + L2(x1, z2, p2) =

= f1(z1, x2) + ϕ1(z1) + 〈p1, g1(z1)〉+ f2(x1, z2) + ϕ2(z2) + 〈p2, g2(z2)〉.

Di�erentiating function L(v, w, p) in w, we consider gradient-restriction of this function
∇2L(v, w, p)|v=w on the diagonal of square Ω× Ω

∇2L(v, w, p)|v=w = ∇2Φ(v, w)|v=w+∇ϕ(w)+∇g>(w)p =

(
∇1L1(z1, x2, p1)
∇2L2(x1, z2, p2)

)

z1 = x1,
z2 = x2
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In particular, at z1 = x̄n
1 , z2 = x̄n

2 , p1 = p̄n
1 , p2 = p̄n

2 we have

∇2Φ(v̄n, v̄n) +∇ϕ(v̄n) +∇g>(v̄n)p̄n =

( ∇1L1(x̄
n
1 , x̄

n
2 , p̄

n
1 )

∇2L2(x̄
n
1 , x̄

n
2 , p̄

n
2 )

)

Using the conditions

|∇2Φ(v + h, v + h) +∇ϕ(v + h)−∇2Φ(v̄, v̄)−∇ϕ(v̄)| ≤ L1|h|,
|∇g>(v + h)−∇g>(v̄)| ≤ L2|h|,
|g(v + h)− g(v)| ≤ L3|h|, |p̄n| ≤ C, n →∞.

estimate three last term from (62)

|∇1L1(x
n
1 , x

n
2 , p̄

n
1 )−∇1L1(x̄

n
1 , x̄

n
2 , p̄

n
1 )|2+

+ |∇2L2(x
n
1 , x

n
2 , p̄

n
2 )−∇2L2(x̄

n
1 , x̄

n
2 , p̄

n
2 )|2 =

= |∇2Φ(vn, vn) +∇ϕ(vn)−∇2Φ(v̄n, v̄n)−∇ϕ(v̄n)+

+ (∇g>(vn)−∇g>(v̄n))p̄n|2 ≤
≤ L2

1|vn − v̄n|2 + (CL2)
2|vn − v̄n|2 = (L2

1 + (CL2)
2)|vn − v̄n|2

and

|g(vn)− g(v̄n)|2 = |g1(x̄
n
1 )− g1(x

n
1 )|2 + |g2(x̄

n
2 )− g2(x

n
2 )|2 = L2

3|vn − v̄n|2.
In view of said above we present (62) as

〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+
+ 〈pn+1 − pn, p∗ − pn+1〉+ 〈p̄n − pn, pn+1 − p̄n〉+
+ α2(L2

1 + (CL2)
2)|vn − v̄n|+ α2L2

3|vn − v̄n|2 ≥ 0.

Applying identity (33), we bring the obtained inequality to the kind

|vn+1 − v∗|2 + |vn+1 − v̄n|2 + d|v̄n − vn|2 + |pn+1 − p∗|2 + |pn+1 − p̄n|2+
+ |p̄n − pn|2 ≤ |vn − v∗|2 + |pn − p∗|2, (63)

where d = 1− 2α2(L2
1 + (CL2)

2) + L2
3) ≥ 0 is under conditions of the theorem, as

0 < α <
1

(
√

2(L2
1 + (CL2)2) + L2

3)
.

The inequality (63) is exact analog of (34), therefore if we continue reasoning
of the theorem 1, then we easily establish the monotone convergence of sequence
xn

1 , x
n
2 → x∗1, x

∗
2, pn

1 , p
n
2 → p∗1, p

∗
2 as n → ∞ to game solution of the problem. The

theorem is proved.
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5 Game problems with coupled constraints
Let the objective functions f1(x1, x2) + ϕ1(x1), f2(x1, x2) + ϕ2(x2) and the functional
vectorial constraint g(x1, x2) ≤ 0, where g(x1, x2) = (g1(x1, x2), . . . , gm(x1, x2)) be
de�ned on the product space Rn1

1 ×Rn2
2 . It is supposed that functions f1(z1, x2)+ϕ(z1),

f2(x1, z2) + ϕ(z2) are continuous and convex on the own variable. The constraint
functions g(x1, x2) are convex in variables x1 and x2 separately and, generally speaking,
are not convex in these variables jointly, for example, it can be a saddle-type function
g(x1, x2) = 〈x1, x2〉.

We consider the following extreme map. Let G = {x1, x2 | g(x1, x2) ≤ 0, x1 ∈
∈ X1, x2 ∈ X2} be a admissible set. Having taken a certain point x = (x1, x2) ∈ G
in this set we take two cross-sections of a kind G1(x) = {z1 ∈ X1 | (z1, x2) ∈ G}
and G2(x) = {z2 ∈ X2 | (x1, z2) ∈ G}. Assuming that the objective functions are
convex in the own variables for any values of other variables, we consider a pair of
optimization problems each of them is on its cross-section

y1(x2) ∈ Argmin{f1(z1, x2) + ϕ1(z1) | g(z1, x2) ≤ 0, z1 ∈ X1},
y2(x1) ∈ Argmin{f2(x1, z2) + ϕ2(z2) | g(x1, z2) ≤ 0, z2 ∈ X2}. (64)

The system of problems (64) determines the operator Y (x) = y1(x2)× y2(x1), which
maps any point x = (x1, x2) ∈ G into some convex closed subset from π1G × π2G,
where π1G is a projection of set G onto space of variable x1 and π2G is a projection
of a set G onto space of a variable x2.

The subset Y (x) represents a direct product of optimal sets of problems (64). If
functions f1(z1, x2) + ϕ(z1), f2(x1, z2) + ϕ(z2) are continuous and convex in the own
variables, and Xi, i = 1, 2 are convex compact sets, then the map has a �xed point
x∗ = (x∗1, x

∗
2), Aubin, Frankowska 1990. It is a point satis�es a system of extreme

inclusions

x∗1 ∈ Argmin{f1(z1, x
∗
2) + ϕ1(z1) | g(z1, x

∗
2) ≤ 0, z1 ∈ X1},

x∗2 ∈ Argmin{f2(x
∗
1, z2) + ϕ2(z2) | g(x∗1, z2) ≤ 0, z2 ∈ X2}. (65)

The problem (65) represents by itself a two-person game with coupled constraints
dependent on parameter x1, x2. For certain values of parameters each of the game
participants try to solve the convex programming problem in own variables. Both
problems of this system have, actually, the same constraint but with respect to
di�erent variables: the �rst problem in variable x1, the second one in variable x2.
In this game situation both players are hardly coupled both objective functions and
constraints. The level of independence of players in this situations not high, therefore
it is natural to consider the problem in scalarized form. To this end we enter two
normalized functions of a kind

Φ(v, w) + ϕ(w) = f1(z1, x2) + ϕ1(z1) + f2(x1, z2) + ϕ2(z2),
G(v, w) = g(z1, x2) + g(x1, z2),

(66)

18



where w = (z1, z2), v = (x1, x2), v, w ∈ Ω = X1 × X2. In terms of new variables
problem(65) can be presented in the form

v∗ ∈ Argmin{Φ(v∗, w) + ϕ(w) | G(v∗, w) ≤ 0, w ∈ Ω} (67)

or that is the same

Φ(v∗, v∗) + ϕ(v∗) ≤ Φ(v∗, w) + ϕ(w), G(v∗, w) ≤ 0 ∀w ∈ Ω. (68)

Uneasy to be convinced of equivalence of problems (65) and (67) or (68). Really, we
present (68) as

f1(x
∗
1, x

∗
2) + ϕ1(x

∗
1) + f2(x

∗
1, x

∗
2) + ϕ2(x

∗
2) ≤ f1(z1, x

∗
2) + ϕ1(z1) + f2(x

∗
1, z2) + ϕ2(z2),

g(z1, x
∗
2) + g(x∗1, z2) ≤ 0, z1 ∈ X1, z2 ∈ X2.

The objective function and functional constraint in this problem have the separable
structure. This circumstance used to split the problem and to reduce it to two-person
game. To this end we introduce the Lagrange function

L(x1, x2, z1, z2, λ) = f1(z1, x2) + ϕ1(z1) + f2(x1, z2) + ϕ2(z2)+
+ 〈λ, g(z1, x2) + g(x1, z2)〉, (69)

where x1 ∈ X1, x2 ∈ X2, z1 ∈ X1, z2 ∈ X2, λ ≥ 0. Assuming that the optimization
problem from (68) subject to constraint quali�cation, it is possible to assert that
x∗1, x

∗
2, λ

∗ is saddle point for Lagrange function in the state of equilibrium, that is

L(x∗1, x
∗
2, x

∗
1, x

∗
2, λ) ≤ L(x∗1, x

∗
2, x

∗
1, x

∗
2, λ

∗) ≤ L(x∗1, x
∗
2, z1, z2, λ

∗) (70)

for all z1 ∈ X1, z2 ∈ X2, λ ≥ 0. The right-hand side of inequality for this system
represents by itself the optimization problem for separable function on square X1×X2.
By virtue of separability of objective function in z1 and z2 and block structure of
constraints the problem is splitted on two independent subtasks, each of them is
determined in own space, namely:

f1(x
∗
1, x

∗
2) + ϕ1(x

∗
1) + 〈λ∗, g(x∗1, x

∗
2)〉 ≤ f1(z1, x

∗
2) + ϕ1(z1) + 〈λ∗, g(z1, x

∗
2)〉, z1 ∈ X1,

f2(x
∗
1, x

∗
2) + ϕ2(x

∗
2) + 〈λ∗, g(x∗1, x

∗
2)〉 ≤ f2(x

∗
1, z2) + ϕ2(z2) + 〈λ∗, g(x∗1, z2)〉, z2 ∈ X2.

Obviously that these problems can be rewritten as

f1(x
∗
1, x

∗
2) + ϕ1(x

∗
1) ≤ f1(z1, x

∗
2) + ϕ1(z1) + 〈λ∗, g(z1, x

∗
2)− g(x∗1, x

∗
2)〉, z1 ∈ X1,

f2(x
∗
1, x

∗
2) + ϕ2(x

∗
2) ≤ f2(x

∗
1, z2) + ϕ2(z2) + 〈λ∗, g(x∗1, z2)− g(x∗1, x

∗
2)〉, z2 ∈ X2.

Or

x∗1 ∈ Argmin{f1(z1, x
∗
2) + ϕ1(z1) | 〈λ∗, g(z1, x

∗
2)− g(x∗1, x

∗
2)〉 ≤ 0, z1 ∈ X1},

x∗2 ∈ Argmin{f2(x
∗
1, z2) + ϕ2(z2) | 〈λ∗, g(x∗1, z2)− g(x∗1, x

∗
2)〉 ≤ 0, z2 ∈ X2}.
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We carry through some transformations of constraints for obtained problems. From
the left-hand side inequality (70), we get 〈λ − λ∗, g(x∗1, x

∗
2) + g(x∗1, x

∗
2)〉 ≥ 0 ∀λ ≥ 0.

Assuming, at �rst λ = 0, and then λ = 2λ∗ in this inequality, we obtain 〈λ∗, g(x∗1,
x∗2)〉 = 0 and λ∗ ≥ 0. In view of said the last two problems get a kind

x∗1 ∈ Argmin{f1(z1, x
∗
2) + ϕ1(z1) | 〈λ∗, g(z1, x

∗
2)〉 ≤ 0, z1 ∈ X1},

x∗2 ∈ Argmin{f2(x
∗
1, z2) + ϕ2(z2) | 〈λ∗, g(x∗1, z2)〉 ≤ 0, z2 ∈ X2}. (71)

The obtained statements mean that x∗1 and x∗2 are optimal points for functions
f1(z1, x

∗
2) + ϕ1(z1) and f2(x

∗
1, z2) + ϕ2(z2) on sets {z1 | 〈λ∗, g(z1, x

∗
2)〉 ≤ 0, z1 ∈ X1}

and {z2 | 〈λ∗, g(x∗1, z2)〉 ≤ 0, z2 ∈ X2} in equilibrium state. Uneasy to see that
these points are optimal solutions of the same functions on sets of a kind {z1 |
| g(z1, x

∗
2) ≤ 0, z1 ∈ X1} and {z2 | g(x∗1, z2) ≤ 0, z2 ∈ X2}. Otherwise, under

some regularity condition for these sets it is easily to receive inconsistency supposing
that there exists another point x′1, for example for the �rst condition, such that
f1(x

′
1, x

∗
2) + ϕ1(x

′
1) < f1(x

∗
1, x

∗
2) + ϕ1(x

∗
1) and g(x′1, x

∗
2) ≤ 0. Multiplying the last

inequality to non-negative vector λ∗, we get at once an inconsistency with above
assertion. Thus, from (71) we have

x∗1 ∈ Argmin{f1(z1, x
∗
2) + ϕ1(z1) | g(z1, x

∗
2) ≤ 0, z1 ∈ X1},

x∗2 ∈ Argmin{f2(x
∗
1, z2) + ϕ2(z2) | g(x∗1, z2) ≤ 0, z2 ∈ X2}. (72)

The equivalence of (65) and (67) is established.

6 Extragradient coupled constraints game methods
To solve the game (72) it is enough to solve the equilibrium problem (67). With this
purpose we present the Lagrange function for (69) in new variables

L(v, w, λ) = Φ(v, w) + ϕ(w) + 〈λ,G(v, w)〉, (73)

where v ∈ Ω, w ∈ Ω, λ ≥ 0. The system of inequalities (70) in these variables looks
like

L(v∗, v∗, λ) ≤ L(v∗, v∗, λ∗) ≤ L(v∗, w, λ∗) ∀w ∈ Ω, λ ≥ 0. (74)
We rewrite this system of inequalities in the equivalent form

v∗ ∈ Argmin{Φ(v∗, w) + ϕ(w) + 〈λ∗, G(v∗, w)〉 | w ∈ Ω},
λ∗1 ∈ Argmax{〈λ,G(v∗, v∗)〉 | λ ≥ 0}. (75)

The obtained system of problems generates in turn necessary (su�cient in convex
case) condition of a minimum both in the form of variational inequality and in the
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form of operator equation. Of course, both forms are equivalent, �rst of them looks
like

〈∇2Φ(v∗, v∗) +∇ϕ(v∗) +∇2G
>(v∗, v∗)λ∗, w − v∗〉 ≥ 0 ∀w ∈ Ω,

− 〈G(v∗, v∗), λ− λ∗〉 ≥ 0 ∀λ ≥ 0,
(76)

where ∇2Φ(v, w), ϕ(w) are a partial gradient in w for any v and a gradient for
functions Φ(v, w), ϕ(w) respectively. ∇2G

>(v, w) is m1×n matrix, where ∇2gi(v, w),
i = 1, 2, . . . ,m are vector-lines.

The second form of necessary conditions for (74) takes the form of operator
equation

v∗ = πΩ(v∗ − α(∇2Φ(v∗, v∗) +∇ϕ(v∗) +∇2G
>(v∗, v∗)λ∗)),

λ∗ = π+(λ∗ + (α/2)G(v∗, v∗)),
(77)

where πΩ(. . .), π+(. . .) are projection operators of some vector into Ω and the positive
orthant Rn

+ respectively, α > 0 is a parameter like steplength.
Before to pass to discussing to solution methods of the system of equations (77)

we consider properties of function G(v, w) in more details . First of all we mark
properties of symmetry for this function. Indeed, from G(v, w) = g(z1, x2)+g(x1, z2) =
= g(x1, z2) + g(z1, x2) = G(w, v) it follows

G(v, w) = G(w, v) ∀v ∈ Ω, w ∈ Ω. (78)

Di�erentiating identity (78) in w, we receive

∇2G
>(v, w) = ∇1G

>(w, v) ∀v ∈ Ω, w ∈ Ω, (79)

where ∇1G
>(·, ·), ∇2G

>(·, ·) are partial gradients (derivatives) in �rst and second
variables.

We prove a key property of symmetrical function G(v, w), namely: private in w
gradient-restriction of function G(v, w) on the diagonal of square Ω×Ω is equal to a
half of gradient of restricted function G(v, w) onto this diagonal

2∇2G
>(v, w)|v=w = ∇G>(v, v) ∀v ∈ Ω. (80)

Indeed, by the de�nition of the di�erentiability for function G(v, w) we get, Antipin
1998

G(v + h,w + k) = G(v, w) +∇1G
>(v, w)h +∇2G

>(v, w)k + ω(v, w, h, k), (81)

where ω(v, w, h, k)/(|h|2 + |k|2)1/2 → 0 as |h|2 + |k|2 → 0. Let w = v and h = k be,
then using (79), we get

G(v + h, v + h) = G(v, v) + 2∇2G
>(v, w)|v=wh + ω(v, h), (82)
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where ω(v, h)/|h| → 0 as |h| → 0. Since (82) is a particular case of (81) it means that
gradient-restriction 2∇2G

>(v, w)|v=w is the gradient ∇G>(v, v) of G(v, v), i.e. (80) is
true.

If the function G(v, w) is convex in w for any v, then the operator ∇2G
>(v, w)

is monotone in w for any v but the gradient-restriction ∇2G
>(v, w)|v=w, generally

speaking, is not monotone one. To make sure the monotonicity of gradient-restriction
(is not mandatory for symmetrical functions) we introduce a class positive-semide�nite
functions. To this end, we mark in

g0(v, w) = Φ(v, w), G(v, w) = (g1(v, w), . . . , Gm(v, w))

and for each functions gi(v, w), i = 0, 1, . . . , m, we extend (7), Antipin 1995.
A function gi(v, w) is called positive-semide�nite onto Ω × Ω, if it obeys the

inequality

gi(w,w)− gi(w, v)− gi(v, w) + gi(v, v) ≥ 0 ∀w, v ∈ Ω. (83)

The condition of positive-semide�niteness of (83) is su�cient to guarantee the
monotonicity of gradient-restriction ∇2gi(v, w)|v=w, if the function gi(v, w) is convex
in w for any v. Indeed, using the system of inequalities (9) from (83) we get the
monotonicity of gradient-restriction

〈∇2gi(w,w)−∇2gi(v, v), w − v〉 ≥ 0 ∀v, w ∈ Ω. (84)

Using inequalities obtained, we transform separately third term in the �rst
inequality (76). Taking into account the key property of symmetric functions (80)
and convexity of vectorial function G(v, v) componently, we have

〈∇2G
>(v∗, v∗)λ∗, w − v∗〉 =

1

2
〈λ∗,∇G>(v∗, v∗)(w − v∗)〉 ≤

≤ 1

2
〈λ∗, G(w, w)−G(v∗, v∗)〉 ≥ 0.

In view of an obtained evaluation we rewrite the �rst inequality from (76) in the form

〈∇2Φ(v∗, v∗)+∇ϕ(v∗), w−v∗〉+(1/2)〈λ∗, G(w,w)−G(v∗, v∗)〉 ≥ 0 ∀w ∈ Ω. (85)

If the operator ∇2Φ(v, v)+ϕ(v) is monotone, then by virtue of (84) we get from (85)

〈∇2Φ(w,w)+∇ϕ(w), w−v∗〉+(1/2)〈λ∗, G(w,w)−G(v∗, v∗)〉 ≥ 0 ∀w ∈ Ω. (86)

These estimates are underlying the convergence analysis of gradient-type methods to
the equilibrium solutions, Antipin 2001 A.

To solve system of equations (77) we use the extragradient approach

λ̄n = π+(λn + (α/2)G(vn, vn)),
v̄n = πΩ(vn − α(∇2Φ(vn, vn) +∇ϕ(vn) +∇2G

>(vn, vn)λ̄n)),
(87)
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λn+1 = π+(λn + (α/2)G(v̄n, v̄n)),
vn+1 = πΩ(vn − α(∇2Φ(v̄n, v̄n) +∇ϕ(v̄n) +∇2G

>(v̄n, v̄n)λ̄n)),
(88)

The steplength α in (87), (88) is determined from the interval

0 < ε ≤ α < 1/
√

2(L1 + L2C)2 + (1/2)L2
3, ε > 0, (89)

where constants L1, L2, L3, C are determined in below.
For the justi�cation of correctness of selecting out parameter α we receive

evaluations of deviations for vectors v̄n and vn+1, λ̄n and λn+1 in (87), (88)

|λ̄n − λn+1| ≤ (α/2)|G(vn, vn)−G(v̄n, v̄n)| ≤ (α/2)L3|vn − v̄n|, (90)

|v̄n − vn+1| ≤ α(|∇2Φ(vn, vn) +∇ϕ(vn)−∇2Φ(v̄n, v̄n)−∇ϕ(v̄n)|+
+ |∇2G

>(vn, vn)−∇2G
>(v̄n, v̄n)||λ̄n|) ≤ α(L1 + L2|λ̄n|)|v̄n − vn| ≤

≤ α(L1 + L2C)|v̄n − vn|,
(91)

where
(|∇2Φ(vn, vn) +∇ϕ(vn)−∇2Φ(v̄n, v̄n)−∇ϕ(v̄n)| ≤ L1|v̄n − vn|,
|∇2G

>(vn, vn)−∇2G
>(v̄n, v̄n)| ≤ L2|v̄n − vn|, |λ̄n| ≤ C ∀n →∞.

We rewrite process (87), (88) in the form of variational inequalities.

〈barλn − λn − (α/2)G(vn, vn), λ− λ̄n〉 ≥ 0 ∀λ ≥ 0,

〈v̄n−vn +α(∇2Φ(vn, vn)+∇ϕ(vn)+∇2G
>(vn, vn)λ̄n), v− v̄n〉 ≥ 0 ∀v ∈ Ω, (92)

and
vn), λ− λn+1〉 ≥ 0 ∀λ ≥ 0,

〈vn+1 − vn + α(∇2Φ(v̄n, v̄n) +∇ϕ(v̄n) +∇2G
>(v̄n, v̄n)λ̄n), v − vn+1〉 ≥ 0 ∀v ∈ Ω,

(93)
We show that the process (87) � (89) converges monotonically under the norm to

one of equilibrium solutions.

Theorem 3 Suppose that a solution set of game problem (72) is non-empty, function
Φ(v, w), G(v, w) are positive-semide�nite and convex in w for any v, G(v, w) is a
symmetric function, the Lipschitz conditions hold in (90), (91), dual sequence |λ̄n| ≤
≤ C is bounded for all n, Ω ⊆ Rn is convex closed set. Then, the sequence vn, λn,
generated by method (87) � (89) converges monotonically under the norm to one of
the equilibrium solutions, i.e. vn, λn → v∗, λ∗ ∈ Ω∗ ×RN

+ as n →∞.

Proof. By putting w = v∗ in (93), we get

〈vn+1 − vn, v∗ − vn+1〉+ α〈∇2Φ(v̄n, v̄n) +∇ϕ(v̄n), v∗ − vn+1〉+
+ α〈∇2G

>(v̄n, v̄n)λ̄n, v∗ − vn+1〉 ≥ 0.
(94)
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Take w = vn+1 in (92)

〈v̄n − vn + α(∇2Φ(vn, vn) +∇ϕ(vn) +∇2G
>(vn, vn)λ̄n), vn+1 − v̄n〉 ≥ 0.

Hence

〈v̄n − vn, vn+1 − v̄n〉+ α〈∇2Φ(v̄n, v̄n) +∇ϕ(v̄n), vn+1 − v̄n〉−
− α〈∇2Φ(v̄n, v̄n) +∇ϕ(v̄n)−∇2Φ(vn, vn)−∇ϕ(vn), vn+1 − v̄n〉+
+ α〈∇2G

>(v̄n, v̄n)λ̄n, vn+1 − v̄n〉−
− α〈(∇2G

>(v̄n, v̄n)−∇2G
>(vn, vn))λ̄n, vn+1 − v̄n〉 ≥ 0,

or taking into account (91)

〈v̄n − vn, vn+1 − v̄n〉+ α〈∇2Φ(v̄n, v̄n) +∇ϕ(v̄n), vn+1 − v̄n〉+
+ α〈∇2G

>(v̄n, v̄n)λ̄n, vn+1 − v̄n〉+ α2(L1 + L2C)2|v̄n − vn| ≥ 0.
(95)

We add inequalities (94) and (95)

〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+
+ α〈∇2Φ(v̄n, v̄n) +∇ϕ(v̄n), v∗ − v̄n〉+
+ α〈∇2G

>(v̄n, v̄n)λ̄n, v∗ − v̄n〉+
+ α2(L1 + L2C)2|v̄n − vn|2 ≥ 0.

(96)

Using (80) and convexity of function G(v, v) by virtue of (84), we transform apart
the fourth term from (96)

〈λ̄n,∇2G(v̄n, v̄n)(v∗ − v̄n)〉 = (1/2)〈λ̄n,∇G(v̄n, v̄n)(v∗ − v̄n)〉 ≤
≤ (1/2)〈λ̄n, G(v∗, v∗)−G(v̄n, v̄n)〉,

then
〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+

+ α〈∇2Φ(v̄n, v̄n) +∇ϕ(v̄n), v∗ − v̄n〉+
+ (α/2)〈λ̄n, G(v∗, v∗)−G(v̄n, v̄n)〉+
+ α2(L1 + L2C)2|v̄n − vn|2 ≥ 0.

We put w = v̄n in inequality (86)

〈∇2Φ(v̄n, v̄n) +∇ϕ(v̄n), v̄n − v∗〉+ (1/2)〈λ∗, G(v̄n, v̄n)−G(v∗, v∗)〉 ≥ 0.

Add two last inequalities

〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+
+ (α/2)〈λ̄n − λ∗, G(v∗, v∗)−G(v̄n, v̄n)〉+ α2(L1 + L2C)2|v̄n − vn|2 ≥ 0.

(97)

Consider �rst inequalities from (92) and (93). Put λ = λ∗ in (93)

〈λn+1 − λn, λ∗ − λn+1〉 − (α/2)〈G(v̄n, v̄n), λ∗ − λn+1〉 ≥ 0 (98)
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è λ = λn+1 â (92)

〈λ̄n − λn, λn+1 − λ̄n〉+ (α/2)〈G(v̄n, v̄n)−G(vn, vn), λn+1 − λ̄n〉−
− (α/2)〈G(v̄n, v̄n), λn+1 − λ̄n〉 ≥ 0,

(99)

Second term in this inequality can be estimated by means of (90), and then we add
both inequalities (98) and (99)

〈λn+1 − λn, λ∗ − λn+1〉+ 〈λ̄n − λn, λn+1 − λ̄n〉+
+ (α/2)2L2

3|v̄n − vn|2 − (α/2)〈G(v̄n, v̄n), λ∗ − λ̄n〉 ≥ 0.

Using the relations 〈λ̄n, G(v∗, v∗)〉 ≤ 0, 〈λ∗, G(v∗, v∗)〉 = 0, we rewrite the latter
inequality in the form

〈λn+1 − λn, λ∗ − λn+1〉+ 〈λ̄n − λn, λn+1 − λ̄n〉+
+

(
α

2

)2

L2
3|v̄n − vn|2 +

α

2
〈G(v∗, v∗)−G(v̄n, v̄n), λ∗ − λ̄n〉 ≥ 0,

(100)

We add inequalities (97) and (100)

〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+
+ 〈λn+1 − λn, λ∗ − λn+1〉+ 〈λ̄n − λn, λn+1 − λ̄n〉+
+ α2(L1 + L2C)2|v̄n − vn|2 + (α/2)2L2

3|v̄n − vn|2 ≥ 0.

By means of identity (33) we expand �rst four scalar products into the sum of squares
1

2
|vn+1 − v∗|2 +

1

2
|λn+1 − λ∗|2 +

1

2
|vn+1 − v̄n|2 +

1

2
|v̄n − vn|2+

+
1

2
|λn+1 − λ̄n|2 +

1

2
|λ̄n − λn|2+

+ α2

(
(L1 + L2C)2 +

(
1

2

)2

L2
3

)
|v̄n − vn|2 ≤

≤ 1

2
|vn − v∗|2 +

1

2
|λn − λ∗|2.

(101)

From here
|vn+1 − v∗|2 + |λn+1 − λ∗|2 + |vn+1 − vn|2 + d|v̄n − vn|2+

+ |λn+1 − λn|2 + |λ̄n − λn|2 ≤ |vn − v∗|2 + |λn − λ∗|2, (102)

where d = 1− 2α2((L1 + L2C)2 + (1/2)2L2
3) > 0, by virtue of (89).

Summing (102) from n = 0 up to n = N , we obtain

|vN+1 − v∗|2 + |λN+1 − λ∗|2 +
k=N∑

k=0

|vk+1 − v̄k|2+

+ d
k=N∑

k=0

|v̄k − vk|2 +
k=N∑

k=0

|λk+1 − λk|2
k=N∑

k=0

|λ̄k − λk|2 ≤ |v0 − v∗|2 + |λ0 − λ∗|2.
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From obtained inequality it follows the boundedness of trajectory

|vN+1 − v∗|2 +
1

2
|λN+1 − λ∗|2 ≤ |v0 − v∗|2 +

1

2
|λ0 − λ∗|2,

and the convergence of series
∞∑

k=0

|vk+1 − v̄k|2 < ∞,
∞∑

k=0

|v̄k − vk|2 < ∞,

∞∑

k=0

|λk+1 − λ̄k|2 < ∞,
∞∑

k=0

|λ̄k − λk|2 < ∞,

and, consequently, tend to zero of quantities

|vn+1 − v̄n|2 → 0, |v̄n − vn|2 → 0, |λn+1 − λ̄n|2 → 0, |λ̄n − λn|2 → 0, n →∞.

Since the sequence vn, λn is bounded, there exist a point v′, λ′ such that vni → v′,
λni → λ′ ïðè ni →∞.

We consider inequalities (92), (93) for all ni →∞ and, passing to a limit we get

〈∇2Φ(v′, v′) +∇ϕ(v′) +∇2G
>(v′, v′)λ′, w − v′〉 ≥ 0 ∀w ∈ Ω,

〈−G(v′, v′), λ− λ′〉 ≥ 0 ∀λ ≥ 0.

The inequalities obtained coincide to (76), then v′ = v∗ ∈ Ω∗, λ′ = λ∗ ≥ 0, i.e.,
any limit point of vn, λn is an equilibrium solution to the problem. The monotonicity
condition of decreasing value |vn−v∗|+ |λn−λ∗| provides of uniqueness of limit point,
i.e. the convergence of vn → v∗, λn → λ∗ as n →∞. The theorem is proved.
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