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FROM OPTIMA TO EQUILIBRIA1

1 Introduction

In recent years there has been a great deal of interest in the expansion of the main concepts
of optimization problems to the field of equilibrium problems. Interest has increased
because optimization problems are not an adequate mathematical tool for modelling in
situations of decision making with multiple agents. Optimization problems can be more
or less adequate in situations where there is one person making decisions working with
an alternative set, but in situations with many agents, each having their personal set
and system of preferences on it and each working within the localized constraints of their
specific situation, it becomes impossible to use the optimization model to produce an
aggregate solution that will satisfy the global constraints that exist for the agents as a
whole.

Such a solution can be found only with the use of diverse equilibrium models. These
situations include saddle point problems, n-person games with Nash equilibrium, inverse
optimization problems, models of economic equilibrium, etc.

Situations that call for the reconciling of contradictory interests or factors are wide-
spread in the everyday world. Examples include market economies, democratic policies,
homeostasis in a live organism, equilibrium in the predator-prey system, stable modes in
the operation of technology and many others.

It is clear there is a great demand for development of the concept of equilibrium
modelling. The immense variety of real-life situations requires a rather rich set of ma-
thematical equilibrium models to describe the unique features of different situations. Such
models are already developed and some of them are mentioned below. They are very
different but they have something in common, namely, each uses the concept of the
equilibrium solution. It is always a fixed point of some mapping of a set onto itself.
This means that such equilibrium models can be scalarized and submitted in the form of
computing a fixed point of an extreme map.

It is not hard to prove the existence theorem regarding the fixed point of an extreme
map. But there are a great difficulties in solving it. To understand the nature of these
difficulties more completely we will consider sequentially the optimization problem, the
saddle point problem and the equilibrium problem. We will try to apply a gradient
approach to solving these. This will give us the ability to see what kind of difficulties we
must overcome to prove the usefulness of this approach for the solution of these problems.

We shall now proceed to more precise statements.

1This paper is based on the talk of author presented at workshop of Prof. Tamaki Tanaka, held at
Hirosaki-university, October,13,1997
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2 Optimization Problems

Let us consider the problem on minimizing a function on a convex set, namely

find v∗ ∈ Ω such that v∗ ∈ Argmin{Φ(v) | v ∈ Ω}. (2.1)

where Φ(v) is a differentiable scalar function, Ω ∈ Rn is a convex set.
The gradient method is one of main approaches of solving problem (2.1). This method

is very good investigated in different forms: iterative and continuous, with projection
operator and out of one. We consider here briefly an continuous gradient projection
method to solve (2.1)

The idea of the method can be presented in the following way. If v∗ is a minimum
point of problem (2.1), then the necessary condition

v∗ = πΩ(v∗ − α∇Φ(v∗)) (2.2)

is satisfied, where πΩ(...) is the projection operator of a vector onto the set Ω, α ≥ 0 is
a parameter such as the step length, and ∇Φ(v) is the gradient of function Φ(v) at the
point v. Condition (2.2) has a simple geometric meaning: moving from the point v∗ along
the antigradient, we return to the point after the projection operator, i.e., v∗ is a fixed
point or an equilibrium point. The discrepancy πΩ(v−α∇Φ(v))− v can be considered as
a transformation of space Rn into Rn. This transformation determines a vector field.

Let us formulate the problem on drawing a trajectory such that its tangent line coin-
cides with the field vector at the given point. The problem is described by the system of
differential equations

dv

dt
+ v = πΩ(v − α∇Φ(v)), v(t0) = v0. (2.3)

The ”dynamical” definition of the fixed point v∗ follows from (2.3), namely, v∗ is the
trajectory point at which the velocity is zero. It follows from general theorems that the
continuous right-hand side of system (2.3) ensures the existence of a solution on a finite
interval. If the Lipschitz condition is satisfied for the right-hand side for all Rn (it does
so in our case), then the trajectory exists and is unique on the infinite interval, i.e., for
all t ≥ t0.

If πΩ(...) = I is the unit matrix (i.e., Ω = Rn), then (2.3) becomes

dv

dt
= −α∇Φ(v), v(t0) = v0. (2.4)

The continuous gradient method without the projection operator has been considered in
many papers, (e.g., see [1]–[5]). Regularized gradient equations have been investigated by
Vasil’ev [6]. The paper [7] includes the review of papers written by non-Russian authors
and devoted to equations like (2.4). Differential equations (2.3) with the projection opera-
tor have been proposed and studied in detail by Antipin [8]. Asymptotic and exponential
stability of these systems is proved there.

Here we dwell on the case in which the projection operator πΩ(...) is linear. This
variant of the gradient projection method has been described by Rosen [9] in the case of
linear constraints and then independently it has been studied in detail by Evtushenko and
Zhadan [10], [11] and by Tanabe [12], [13]. It is generated by the problem on minimizing
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the goal function Φ(v) under the equality-type constraints Ω = {v | g(v) = 0, v ∈ Rn},
where g(v) is a differentiable vector function. One should construct a gradient trajectory
belonging to the manifold Ω. To this end, at each point v ∈ Ω one constructs the tangent
subspace K, which uniquely generates the operator of projection of the space Rn onto
such that πK(K) = K. Thus, in particular, the equality πK(v) = v is satisfied for the
point v being the tangency point of to the manifold Ω. In order to construct the vector
field at each point w, one projects the gradient ∇Φ(v) onto the tangent space. Hence,
this field is described by the transformation πK(∇Φ(v)).

Consider the following: construct a trajectory v(t) belonging to the manifold Ω such
that its tangent coincides with the field vector πK(∇Φ(v)) at each point v. The problem
is described by the system of differential equations

dv

dt
= −απK(∇Φ(v)), v(t0) = v0. (2.5)

The latter can be obtained from (2.3) in a quite formal way if we take into account
the fact that in this case the projection operator is linear and the condition πK(v) = v is
satisfied for it. The projection operator is determined by the analytical formula

πK(...) = I −∇gT (v)[∇g(v)∇gT (v)]−1∇g(v),

where ∇g(v) is the gradient of function g(v).
Differential equations of internal and external linearization methods for convex pro-

gramming problems with inequality-type constraints have been described by Antipin [14],
[15]. The properties of iterative analogs to the continuous gradient projection methods,
namely,

vn+1 = πΩ(vn − α∇Φ(vn)) (2.6)

have been well studied in [16].
First, we recall that the projection operator πΩ(b) of vector b onto the set Ω can be

determined by solving the variational inequality

〈πΩ(b)− b, z − πΩ(b)〉 ≥ 0 (2.7)

for all z ∈ Ω.
Let us rewrite equations (2.2) and (2.3) in the form (2.7). The former is equivalent to

the variational inequality

〈∇Φ(v∗), z − v∗〉 ≥ 0 (2.8)

for all z ∈ Ω, whereas the latter is equivalent to the variational inequality

〈v̇ + v − v + α∇Φ(v∗), z − v̇ − v〉 ≥ 0 (2.9)

for all z ∈ Ω, where v̇ = dv/dt.
In what follows we present the theorem on convergence of method, assuming that

∇Φ(v) is a monotone operator satisfying the Lipschitz condition. Here we do not assume
that the initial condition belongs to the set Ω, moreover, v0 ∈ Rn.
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Theorem 1 If a set Ω ∈ Rn is convex, closed, the objective function Φ(v) is differential
and convex, then the trajectory v(t), induced by method (2.3) with parameter α > 0
converges to the solution of optimization problem (2.1).

Proof. Set z = v∗ in (2.9) and z = v + v̇ in (2.8) and add these two inequalities. We
obtain

〈v̇ + α(∇Φ(v)−∇Φ(v∗), v∗ − v̇ − v〉 ≥ 0. (2.10)

Let us represent (2.10) as

〈v̇, v∗ − v〉+ α〈∇Φ(v)−∇Φ(v∗), v∗ − v〉 − |v̇|2 − α〈∇Φ(v)−∇Φ(v∗), v̇〉 ≥ 0. (2.11)

Taking into account the fact that the gradient ∇Φ(v) is monotone, we obtain

d

dt
|v − v∗|2 + |v̇|2 + α

d

dt
(Φ(v)− Φ(v∗)− 〈∇Φ(v∗), v − v∗〉) ≤ 0. (2.12)

Next, integrating (2.12) from to t0 to t, we obtain

|v − v∗|2 +

t∫

t0

|v̇|2dτ + α(Φ(v)− Φ(v∗)− 〈∇Φv∗, v − v∗〉 ≤

≤ |v0 − v∗|2 + α(Φ(v0)− Φ(v∗)− 〈∇Φ(v∗), v0 − v∗〉).
(2.13)

Since Φ(v) is convex, i.e., Φ(v) − Φ(v∗) − 〈∇Φ(v∗), v0 − v∗〉 ≥ 0, it follows from (2.13)
that the trajectory v(t) is bounded, i.e., |v(t)− v∗| ≤ C, and decreases monotonically in
the sense of |v − v∗|2 + Φ(v)− Φ(v∗)− 〈∇Φ(v∗), v0 − v∗〉. These properties are sufficient
for the converge of trajectory to a limit point, namely, v(t) → v∗ ∈ Ω∗ as t → ∞ for all
v0. It is proof that gradient projection method is converged to a optimal point always
since operator ∇Φ(v) satisfy of three distinguishes features: it is potential, monotone and
subject Lipschitz condition. The latter is included in the conditions of the existence and
uniqueness theorem. Theorem is prove.
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3 Saddle point problems

1. Saddle gradient method. Let us examine the problem of calculating a saddle point
of a function of two variables

find x∗, p∗ ∈ Q× P such that
L(x∗, p) ≤ L(x∗, p∗) ≤ L(x, p∗) ∀x ∈ Q, ∀p ∈ P,

(3.1)

where L : Rn×Rm → R be a convex-concave function, Q ⊂ Rn, P ⊆ Rm be convex sets.
In particular, the saddle function can be a Lagrange function L(x, p) = f(x) + 〈p, g(x)〉
of the convex programming problem [17]

x∗ ∈ Argmin{f(x) | g(x) ≤ 0, x ∈ Q}. (3.2)

For applications in the field of decision making it is important to develop the theory
of saddle points for vector-valued functions. We note some interesting publications in this
direction [18]-[22].

Assuming that the function L(x, p) is differentiable, we write out necessary and suffi-
cient, conditions to be a saddle point

x∗ = πQ(x∗ − α∇xL(x∗, p∗)),
p∗ = πP (p∗ + α∇pL(x∗, p∗)),

(3.3)

where πQ(...) and πP (...) are the operators of projection of vectors on the sets Q and
P , and ∇xL(x, p) and ∇pL(x, p) are the vector gradients of the function L(x, p) in the
variables x and p, respectively.

The point x∗, p∗ is a fixed point, or an equilibrium point. System (3.3) has a simple
geometric meaning. Let x∗, p∗ be an equilibrium point. Then, on taking a step from the
point x∗, p∗ in the direction of a partial gradient (antigradient) of the saddle function
L(x, p), we again move to the point x∗, p∗ after the projection. Systems (3.1) and (3.3)
are equivalent to each other.

The residual,i.e., the difference between the left and the right side of (3.3), which is
equal to zero at the point x∗, p∗ and not equal to zero at an arbitrary point x, p specifies
a mapping of the set Rn ×Rm into itself. The resultant image can be viewed as a vector
field with the fixed point x∗, p∗. Given a vector field, we state the problem of drawing the
trajectory so that its tangent line coincide with the specified direction of the field at that
point. Formally, this problem is written as the system of differential equations

dx

dt
= πQ(x− α∇xL(x, p))− x,

dp

dt
= πP (p + α∇pL(x, p))− p.

(3.4)

Since the operator −∇xL(x, p),∇pL(x, p) is monotone one, because of L(x, p) is a
convex-concave function, and, by definition, satisfy the Lipschitz condition, while the
operators πQ(...) and πP (...) are unextending ones. System (3.4) generates the trajectory
x(t), p(t) for all x(t0) = x0 and p(t0) = p0, in accordance with the existence and uniqueness
theorem, at any t ≥ t0.
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If Q = Rn and P = Rm, then πQ(...) and πP (...) are unit operators and system (3.4)
assumes the form [23]

dx

dt
= −α∇xL(x, p),

dp

dt
= α∇pL(x, p). (3.5)

If g(x) ≡ 0 in (3.2), then we obtain the continuous method of gradient projection (2.3)
for optimization of f(x) on the set Q [8],[24]

The question of whether the trajectory of process (3.4) and its modifications will tend
to one of the equilibria of the system as t → ∞ now arises. The answer to this question
is easy to arrive at by considering the simplest example. Let the saddle point function
have the form L(x, p) = x × p. The origin of coordinates is then a saddle point of this
function and satisfies the inequality 0× p ≤ 0× 0 ≤ x× 0 for all x ∈ R1 and p ∈ R1. The
saddle gradient method with account for descent in one variable and ascent in the other
has the form

dx

dt
= −αp,

dp

dt
= αx, α > 0, x(t0) = x0, p(t0) = p0. (3.6)

Hence we have xdx + pdp = 0 or x(t)2 + p(t)2 = r2, i.e., the trajectories of the method,
which represent concentric circles, do not converge to zero. The nonconvergence of the
method stems from the fact that the operator F (x, p) = (−p, x)T is not potential, although
F1(x, p) = (p, x)T is a potential operator [25] since it is a gradient for L(x, p).

MONOTONICITY LIPSCH.CONDIT.

µ ´³¶

@@ ¡¡
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Fig.2

In this example, the equilibrium point is an equilibrium of the “center” type and,
therefore, it is not asymptotically stable, although this point is stable in the sense of
Liapunov. A small deformation of the phase portrait may change the property of equi-
librium, for example, convert the asymptotically unstable “center” to an asymptotically
stable node. The requisite deformations of phase portraits can evidently be obtained by
many methods. One fruitful idea is the concept of control of dynamic systems with the
aid of feedback loops. In the present work we examine gradient processes, with proximal
ones being treated in [26].

2. Control saddle gradient method. We shall regard the feedback loops as func-
tions dependent on the phase coordinates and velocities of the system, i.e., u = u(x, p, ẋ, ṗ)
and v = v(x, p, ẋ, ṗ), where ẋ = dx

dt
, ṗ = dp

dt
, and x ∈ Q, p ∈ P . By definition, these

functions are equal to zero at equilibrium points.
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We introduce the additive controls u and v in gradient system (3.4) so as to obtain

dx

dt
+ x = πQ(x− α∇xL(x, p + u)),

dp

dt
+ p = πP (p + α∇pL(x + v, p)). (3.7)

and state the following problem. In a certain class of feedback functions u = u(x, p, ẋ, ṗ)
and v = v(x, p, ẋ, ṗ) we must select the controls as state functions of the dynamic system
(3.7) that would ensure convergence of the trajectory x(t), p(t) to an equilibrium point. In
other words, we need to synthesize the control algorithm that would transfer the system
(3.7) from an arbitrary initial state x0, p0 to an equilibrium state x∗, p∗ in an infinite time
interval.

The feedback functions u = u(x, p, ẋ, ṗ) and v = v(x, p, ẋ, ṗ) can be thought of either as
the position of the “rudders” of an object that moves along the trajectory of interest or as
the vector of energy to be expended to maintain the “rudders” in the specified position.
At the point of equilibrium the object is stationary and its velocities ẋ, ṗ are equal to
zero, so that the energy consumption in equilibrium is zero: u = u(x∗, p∗, ẋ∗, ṗ∗) = 0,
v = v(x∗, p∗, ẋ∗, ṗ∗) = 0. This is perhaps the only requirement placed on the controls,
following from the essence of the situation. In every other respect the controls can be
arbitrary.

The simplest controls have the form [25]

u = ṗ, v = ẋ

and express a simple idea: the energy spent on control of a motion is proportional to
the velocity vector. An other type of control present itself the residuals generated by
conditions (3.3)

u = πP (p + α∇pL(x, p))− p, v = πQ(x− α∇xL(x, p))− x. (3.8)

In this paper we consider composite controls of the form

u = πP (p + α∇pL(x, p))− p, v = ẋ (3.9)

On substituting (3.9) into (3.7), we obtain

dx

dt
+ x = πQ(x− α∇xL(x, p̄)),

dp

dt
+ p = πP (p + α∇pL(x + ẋ, p)),

p̄ = πP (p + α∇pL(x, p)),

x(t0) = x0, p(t0) = p0.

(3.10)

An iterative analog of (3.10) is given as

p̄n = πP (pn + α∇pL(xn, pn)),

xn+1 = πQ(xn − α∇xL(xn, p̄n)),

pn+1 = πP (pn + α∇pL(xn+1, pn)),

(3.11)
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It is supposed that the gradients ∇pL(x, p), ∇xL(x, p) satisfy the Lipschitz conditions
for some bounded closed set

|L(x + h, p + k)− L(x, p)− 〈∇xL(x, p), h〉 − 〈∇pL(x, p), k〉| ≤

≤ 1

2
L(|h|2 + |k|2),

(3.12)

where L is a Lipschitz constant. In particular from this condition we have

|L(x + h, p)− L(x, p)− 〈∇xL(x, p), h〉| ≤ 1

2
L|h|2 (3.13)

for all x and x + h from Q and p from P , and

|L(x, p + h)− L(x, p)− 〈∇pL(x, p), h〉| ≤ 1

2
L|h|2 (3.14)

for all p and p + h from P and x from Q, and there is one else condition of the same type

|∇pL(x + h, p)−∇pL(x, p)| ≤ L|h|. (3.15)

In the general case the Lipschitz constants from (3.14) and (3.15) are different. It is
supposed that we have chosen least of them.

We represent system of equations (3.10) in the form of the variational inequalities

〈ẋ + α∇xL(x, p̄), z − x− ẋ〉 ≥ 0, ∀z ∈ Q, (3.16)

〈ṗ− α∇pL(x + ẋ, p), y − p− ṗ〉 ≥ 0, ∀y ∈ P, (3.17)

and, at last

〈p̄− p− α∇pL(x, p), y − p̄〉 ≥ 0, ∀y ∈ P. (3.18)

We estimate the value of the deviation of the vectors p + ṗ and p̄ in (3.10).

|p+ ṗ− p̄| ≤ |πP (p+α∇pL(x+ ẋ, p)−πP (p+α∇pL(x, p))| ≤ α|∇pL(x+ ẋ, p)−∇pL(x, p)|.

Using of (3.15), we obtain
|ṗ + p− p̄| ≤ αL|ẋ|. (3.19)

The following theorem enables us to prove that the equilibrium points of process
(3.10) controlled by means of feedback are asymptotically stable because of the operator
−∇xL(x, p), ∇pL(x, p) is monotone and satisfies the Lipschitz condition.
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Theorem 2 If the set X∗ × P ∗ of saddle points of system (3.1) is not empty, L(x, p)
is convex-concave function and its gradient (∇xL(x, p),∇pL(x, p)) satisfy the Lipschitz
condition (3.12), Q and P are the convex closed sets, the parameter α is chosen from
condition α ≤ 3

4
L, then the trajectory of process (3.10) converges monotonically in norm

to one of the saddle points, i.e., x(t) → x∗ ∈ X∗ and p(t) → p∗ ∈ P ∗ as t → ∞ for all
x0, p0.

Proof. Setting z = x∗ in (3.16) yields

〈ẋ + α∇xL(x, p̄), x∗ − x− ẋ〉 ≥ 0. (3.20)

We write this inequality in the form

1

2

d

dt
|x− x∗|2 + |ẋ|2 − α〈∇xL(x, p̄), x∗ − x〉+ α〈∇xL(x, p̄), ẋ〉 ≤ 0. (3.21)

We add to the left side of (3.21) a zero quantity L(x+ ẋ, p̄)−L(x+ ẋ, p̄). Furthermore,
using the convexity of the function L(x, p) in x in the form of the inequality

〈∇xL(x, p̄), x∗ − x〉 ≤ L(x∗, p̄)− L(x, p̄),

we transform (3.21):

1

2

d

dt
|x−x∗|2 + |ẋ|2−α{L(x∗, p̄)−L(x, p̄)+L(x+ ẋ, p̄)−L(x+ ẋ, p̄)−〈∇xL(x, p̄), ẋ〉} ≤ 0.

(3.22)
Taking into account (3.13) we obtain

1

2

d

dt
|x− x∗|2 + |ẋ|2 − α

2
L|ẋ|2 − α{L(x∗, p̄)− L(x + ẋ, p̄)} ≤ 0. (3.23)

From (3.1) we get
L(x∗, p̄) ≤ L(x∗, p∗) ≤ L(x + ẋ, p∗).

So we can write

1

2

d

dt
|x− x∗|2 + (1− α

2
L)|ẋ|2 − α(L(x + ẋ, p∗)− L(x + ẋ, p̄)) ≤ 0. (3.24)
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We will return to (3.24) a little later, while now we consider variational inequalities
(3.17) and (3.18). Letting y = p∗ in (3.17), we obtain

〈ṗ− α∇pL(x + ẋ, p), p∗ − p− ṗ〉 ≥ 0,

or
〈ṗ, p∗ − p− ṗ〉 − α〈∇pL(x + ẋ, p), p∗ − p− ṗ〉 ≥ 0, (3.25)

In a similar fashion, setting y = p + ṗ in (3.18) we obtain

〈p̄− p− α∇pL(x, p), p + ṗ− p̄〉 ≥ 0,

or
〈p̄− p, p + ṗ− p̄〉 − α〈∇pL(x, p), p + ṗ− p̄〉 ≥ 0, (3.26)

We transform of (3.26) in the form

〈p̄−p, p+ ṗ− p̄〉+α〈∇pL(x+ ẋ, p)−∇pL(x, p), p+ ṗ− p̄〉−α〈∇pL(x+ ẋ, p), p+ ṗ− p̄〉 ≥ 0.
(3.27)

Taking into account (3.15) and (3.19) we have from (3.27)

〈p̄− p, p + ṗ− p̄〉+ α2L2|ẋ|2 − α〈∇pL(x + ẋ, p), p + ṗ− p̄〉 ≥ 0. (3.28)

Adding together (3.25) and (3.28) gives

〈ṗ, p∗ − p− ṗ〉+ α2L2|ẋ|2 + 〈p̄− p, p + ṗ− p̄〉 − α〈∇pL(x + ẋ, p), p∗ − p̄〉 ≥ 0. (3.29)

We use the concavity of L(x, p) in p

〈∇pL(x + ẋ, p), p∗ − p〉 ≥ L(x + ẋ, p∗)− L(x + ẋ, p)

then it can be written as

−1

2

d

dt
|p− p∗|2 − |ṗ|2 + α2L2|ẋ|2 + 〈p̄− p, p + ṗ− p̄〉+

α{L(x + ẋ, p)− L(x + ẋ, p∗)} − α〈∇pL(x + ẋ, p), p− p̄〉 ≥ 0. (3.30)

Summing (3.24) and (3.30) yields

1

2

d

dt
|x− x∗|2 + (1− α

2
L− α2L2)|ẋ|2 +

1

2

d

dt
|p− p∗|2 + |ṗ|2 − 〈p̄− p, p + ṗ− p̄〉+

α{L(x + ẋ, p̄)− L(x + ẋ, p)− 〈∇pL(x + ẋ, p), p̄− p〉} ≤ 0. (3.31)

Taking into account (3.14) we get

1

2

d

dt
|x− x∗|2 + (1− αL(

1

2
+ αL))|ẋ|2 +

1

2

d

dt
|p− p∗|2 + |ṗ|2−

〈p̄− p, p + ṗ− p̄〉 − α

2
L|p̄− p|2 ≤ 0. (3.32)
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We transform the last but one summand in (3.32) using the identity

|p1 − p2|2 = |p1 − p3|3 + 2〈p1 − p3, p3 − p2〉+ |p3 − p2|2. (3.33)

For this purpose, suppose that p1 = p, p2 = p + ṗ and p3 = p̄ in (3.33). We have then

2〈p̄− p, p + ṗ− p̄〉 = |ṗ|2 − |p− p̄|2 − |p + ṗ− p̄|2.
Use the obtained decomposition then

1

2

d

dt
|x− x∗|2 +

1

2

d

dt
|p− p∗|2 + c|ẋ|2 +

1

2
|ṗ|2−

1

2
c2|p̄− p|2 +

1

2
|p + ṗ− p̄|2 ≤ 0, (3.34)

where c1 = (1−αL(1
2
+αL)) > 0 and c2 = 1−αL > 0 because of α ≤ 3

4
L by the condition

of theorem.
We integrate inequality (3.34) between t0 and t

|x− x∗|2 + |p− p∗|2 + 2c1

∫ t

t0

|ẋ|2dτ + 2

∫ t

t0

|ṗ|2dτ−

c2

∫ t

t0

|p̄− p|2dτ +

∫ t

t0

|p + ṗ− p̄|2dτ ≤ |x0 − x∗|2 + |p0 − p∗|2, (3.35)

where x0 = x(t0), p0 = p(t0). The boundedness of the trajectory |x(t)−x∗|2+|p(t)−p∗|2 ≤
|x0 − x∗|2 + |p0 − p∗|2 follows from (3.35), and since x0, p0 is an arbitrary initial value,
the set of equilibrium points is stable in the sense of Liapunov. In this case, the integrals∫ t

t0
|ẋ|2dτ < ∞,

∫ t

t0
|ṗ|2dτ < ∞ and

∫ t

t0
|p̄− p|2dτ < ∞,

∫ t

t0
|p + ṗ− p̄|2dτ < ∞ converge

as t →∞.
We now prove the asymptotic stability of the set of equilibrium points. Assuming

that there exists a quantity ε > 0 such that |ẋ(t)| ≥ ε and |ṗ(t)| ≥ ε for all t ≥ t0, we
find that this assumption contradicts the convergence of the integrals. Consequently, a
subsequence of instants of time Ti → ∞ exists such that |ẋ(ti)| → 0 and |ṗ(ti)| → 0.
Because x(t), p(t) is bounded, an element x

′
, p

′
such that x(ti) → x

′
and p(ti) → p′ as

ti →∞ exists.
We examine equations (3.10) for all times ti →∞ and, passing to the limit, write out

the limit ones

x
′
= πQ(x

′ − α∇xL(x
′
, p

′
)),

p
′
= πP (p

′
+ α∇pL(x

′
, p

′
)). (3.36)

This system of equations are equivalent to (3.1) since it is the same as (3.3) and, hence,
x
′
= x∗ ∈ Q and p

′
= p∗ ∈ P .

Thus, any limit point of the trajectory x(t), p(t) is solution to the problem, in which
case the quantity |x(t) − x∗|2 + |p(t) − p∗|2 decreases monotonically. These two facts
taken together imply that the trajectory x(t), p(t) can have only one limit point, i.e.,
the trajectory x(t), p(t) converges monotonically to one of the solutions of the problem:
x(t) → x∗ and p(t) → p∗ as t →∞. This proves the theorem.

An iterative version (3.11) of this process converges under the same conditions.
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4 Equilibrium problem

1. Statement of problem. Let us consider the problem of computing a fixed point of
the extremal mapping [27],[28]

find v∗ ∈ Ω such that v∗ ∈ Argmin{Φ(v∗, w) | w ∈ Ω}. (4.1)

Here the function Φ is defined on the product space Rn × Rn and Ω ⊂ Rn is a convex
closed set. It is supposed that Φ(v, ·) is convex on Ω for any v ∈ Ω. It is also assumed
that the extremal (marginal) mapping w(v) ≡ Argmin{Φ(v, w) | w ∈ Ω} is defined for
all v ∈ Ω and the solution set Ω∗ = {v∗ ∈ Ω | v∗ ∈ w(v∗)} ⊂ Ω of the initial problem is
nonempty. According to Caccutani’s fixed point theorem the latter assertion follows from
the continuity of Φ and the convexity of Φ(v, ·) for any v ∈ Ω, where Ω is compact. In
this case w(·) is an upper semicontinuous mapping that maps each point of the convex,
compact set Ω into a closed convex subset of Ω [29].

Any point solving problem (4.1) satisfies the inequality

Φ (v∗, v∗) ≤ Φ (v∗, w) ∀w ∈ Ω. (4.2)

This inequality can be regarded as an equivalent definition of the fixed point.
Problem (4.1) can be considered from different points of view. On the one hand it

represents an extremal inclusion, which generalizes the concept of operator equations. On
the other hand, it is possible to consider this problem as a scalar convolution of diverse
game problems, which describe the situation of a coordination of contrary interests and
(or) factors for many agents. We shall illustrate this by means of some examples.

1. Saddle point problems [17]. Let L : Rn × Rm → R be a convex-concave function,
Q ⊆ Rn, P ⊆ Rm be convex sets. We seek a saddle point (x∗, p∗) ∈ Q×P of L, satisfying
(by definition) the system of inequalities

L(x∗, y) ≤ L(x∗, p∗) ≤ L(z, p∗) ∀z ∈ Q, ∀y ∈ P. (4.3)

We introduce a normalized function Φ via Φ(v, w) = L(z, p) − L(x, y), where w =
(z, y), v = (x, p). Then problem (4.3) in new variables can be written easily in the
form (4.1). Both formulations are equivalent [25].

2. N-person games with Nash equilibria. Let fi(xi, x−i) be the payoff function of i-
th player, i ∈ I. This function depends on both their own strategies xi ∈ Xi, where
Xi = (xi)i∈I , and the strategies of all other players x−i = (xj)j∈I\i. An equilibrium point
of this n−person game is the solution x∗i , i = 1, ..., n of the system of extremal inclusions

x∗i ∈ Argmin{fi(xi, x
∗
−i) | xi ∈ Xi}. (4.4)

Now we introduce a normalized function of the kind

Φ(v, w) =
n∑

i=1

fi(xi, x−i),

where v = (x−i), w = (xi), i = 1, ..., n and (v, w) = (xi, x−i) ∈ Ω× Ω. With the help of
this function problem (4.4) can be written in the form (4.1).
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3. Inverse optimization problems [30]. An inverse optimization problem represents
a system of two or more relations. For example, one of them is a parametric convex
programming problem, and the other is a system of inequalities or equations

x∗ ∈ Argmin{〈λ∗, f(x)〉 | g(x) ≤ 0, x ∈ Q},
G(x∗) ≤ d. (4.5)

It is required to choose in (4.5) non-negative coefficients of linear convolution λ = λ∗ such
that the corresponding optimal solution x = x∗ belongs to a prescribed convex set. In
particular, this set may contain one point only. It is supposed that all functions of problem
(4.5) are convex. So, the well-known Arrow–Debre model of economic equilibrium is an
inverse multicriterial optimization problem. Any inverse optimization problem (4.5) can
be considered always as a special case of a two-level (hierarchical) problem (cf. [31], [32])
such that the objective function is equal to a constant. It is clear [28] that System (4.5)
can be represented as a two-person game with the Nash equilibrium

x∗ ∈ Argmin{〈λ∗, f(x)〉 | g(x) ≤ 0, x ∈ Q},
p∗ ∈ Argmin{〈p,G(x∗)− d〉 | p ≥ 0}. (4.6)

In turn problem (4.6) can be reduced to problem (4.1) with the help of the normalized
function.

4. Variational inequality problem [33],[34]. Let F : Rn → Rn be a given mapping. It
requires to find a point v∗ ∈ Ω such that

〈F (v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω. (4.7)

We introduce the function Φ(v, w) = 〈F (v), w− v〉 to formulate problem (4.1). It can be
shown that (4.1) is equivalent to (4.7).

If in problem (4.7) the set Ω is the positive orthant (Rn)+, then (4.7) can be reduced
to a complementarity problem. In other words, it is required to find v∗ ≥ 0 such that

F (v∗) ≥ 0, 〈F (v∗), v∗〉 = 0, v∗ ≥ 0. (4.8)

It is clear that in this case the problems (4.7) and (4.8) are equivalent.
5. Fixed point finding problem . Let F : Ω → Ω be a given mapping with Ω ⊂ Rn.

One wants to compute a fixed point of the operator F (v) such that

v∗ = F (v∗), v∗ ∈ Ω. (4.9)

Following [35], we put Φ(v, w) = 〈v − F (v), w − v〉. Then it holds: v∗ solves problem
(4.1) if and only if v∗ is a solution of (4.9). Indeed, it is obvious that (4.1) follows from
(4.9). On the contrary, if v∗ is a solution of (4.1), by taking w = F (v∗), we obtain
0 ≤ Φ(v∗, v∗) = −|v∗ − F (v∗)|2. Hence, v∗ = F (v∗).

The enumerate list of problems does not exhaust all possible applications of problem
(4.1). Other examples can be found in [35].

2.Splitting of functions.It is known that linear space of square matrixes has two
linear subspaces of symmetric and anti-symmetric matrixes. Any square matrix can be
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decomposed in a sum of two projections on these subspaces. Carrying out an analogy
between square matrixes and objective functions Φ(v, w) of problems (4.1), we select in
linear space of functions two linear subspaces, which are described by the following ratioes

Φ(w, v)− Φ(v, w) = 0 ∀w ∈ Ω, ∀v ∈ Ω, (4.10)

Φ(w, v) + Φ(v, w) = 0 ∀w ∈ Ω, ∀v ∈ Ω. (4.11)

We shall say that functions of the first class are symmetric and those of the second
class are anti-symmetric. If the range of definition of these functions represents a square
grid, then we deal with usual classes of symmetric and anti-symmetric matrixes.

Remember that the pair of points with coordinates w, v and v, w are located symmetri-
cally concerning the diagonal of the square Ω×Ω, or with respect to linear manifold v = w.
This gives us capabilities to introduce the concept of a transposed function ΦT (v, w) [36].
Let the function ΦT (v, w) be given by v, w → Φ(w, v), i.e. ΦT (v, w) = Φ(w, v), then
ΦT (v, w) is said to be the transpose of function and in terms of conditions (4.10) and
(4.11) look like

Φ (v, w) = ΦT (v, w) , Φ (v, w) = −ΦT (v, w) .

Using obvious ratioes: Φ(v, w) = (ΦT (v, w))T , (Φ1(v, w) + Φ2(v, w))T = ΦT
1 (v, w) +

ΦT
2 (v, w), It is easy to show that any real function Φ(v, w) always can be presented as the

sum

Φ (v, w) = S(v, w) + K(v, w), (4.12)

where the function S(v, w) is symmetric and K(v, w) is anti-symmetric. This expansion
is unique and

S(v, w) =
1

2

(
Φ(v, w) + ΦT (v, w)

)
, K(v, w) =

1

2

(
Φ(v, w)− ΦT (v, w)

)
. (4.13)

Hereinafter the capability of expansion for the function Φ(v, w) on a sum of symmetric
and anti-symmetric ones will play an important role.

3. Symmetric functions. Consider basic property of symmetric functions, which in
concordance with (4.10) satisfy the condition

S(w, v)− S(v, w) = 0 ∀w ∈ Ω, ∀v ∈ Ω. (4.14)

If S(v, w) is the differentiable function, then differentiating the identity (4.14) in w, we
get

∇vS(w, v) = ∇wS(v, w) ∀w ∈ Ω, ∀v ∈ Ω, (4.15)

where ∇vS(w, v), ∇wS(v, w) are partial gradients of S(v, w) in first and second variables
accordingly. Put w = v in (4.15), then we obtain

∇vS(v, v) = ∇wS(v, v) ∀v ∈ Ω. (4.16)

Thus we can formulate the following
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Property 1 . Partial derivatives of symmetric functions on the diagonal of square Ω×Ω
are equal to each other.

From this property the statement immediately follows that the contraction of partial
gradient ∇wS(v, w) of symmetric function S(v, w) on the main diagonal of square Ω×Ω
is a potential operator. Indeed, by definition of differentiability of function S(v, w) we
have

S(v + h,w + k) = S(v, w) + 〈∇vS(v, w), h〉+ 〈∇wS(v, w), k〉+ ω(v, w, h, k), (4.17)

where ω(v, w, h, k)/(|h|2 + |k|2)1/2 → 0 as |h|2 + |k|2 → 0. Put w = v and h = k, then
taking into account (4.16), we get from (4.17)

S(v + h, v + h) = S(v, v) + 2〈∇wS(v, v), h〉+ ω(v, h), (4.18)

where ω(v, h)/|h| → 0 as |h| → 0. Since (4.18) is the particular case of (4.17) it means
that contraction of gradient ∇wS(v, w) on the diagonal of the square Ω × Ω is gradient
∇S(v, v) for the function S(v, v), i.e.

2∇wS(v, w)|v=w = ∇S(v, v) ∀v ∈ Ω. (4.19)

Thus, it is proved following

Property 2 . The operator ∇wS(v, v) is potential on the diagonal of the square Ω× Ω

The class of symmetric functions can be extended essentially with preservation of a
basic potential property. We shall introduce the following

Definition 1 . Function S(v, w) is called pseudosymmetric, if there exist the function
P (v) such that

∇P (v) = 2∇wS(v, w)|w=v ∀v ∈ Ω. (4.20)

Here the function P (v) is the potential of the operator ∇wS(v, w) |w=v. Obviously,
the class of pseudosymmetric functions includes a subset of symmetric ones. In this case

∇P (v) = ∇S(v, v) ∀v ∈ Ω, (4.21)

i.e. the contraction of the function S(v, w) |w=v on the main diagonal is a potential.
The potential can have various properties. In particular, its gradient can satisfy to

the Lipschitz condition with a constant Lp

|P (v + h)− P (v)− 〈∇P (v), h〉| ≤ 1

2
Lp|h|2, (4.22)

for all v + h and v from some set or the condition of monotonicity

〈∇P (v + h)−∇P (v), h〉 ≥ 0 ∀v ∈ Ω. (4.23)

If problem (4.1) is potential, i.e. it satisfies condition (4.20), then it is essentially reduced
to an optimization one. Indeed, if S(v, w) is the differentiable function in w ∈ Ω for any
v ∈ Ω from (4.2) we have
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〈∇wS(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω. (4.24)

By virtue of (4.20) from (4.24) we have

〈∇P (v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω. (4.25)

Thus, two necessary conditions (4.24) and (4.25) are held simultaneously at a point v∗

for the equilibrium potential problem (4.1). If one of two functions P (v) and S(v∗, w)
is convex on Ω, then v∗ is a minimum of that function, which is convex. If the both
are convex, then v∗ there will be the minimum simultaneously of two functions. From
convexity S(v, w) in w for any v ∈ Ω it follows that v∗ ∈ Ω∗ is equilibrium solution (4.1)
as well. Indeed, applying to (4.24) the left-hand side of inequality for system

〈∇f(x), y − x〉 ≤ f(y)− f(x) ≤ 〈∇f(y), y − x〉, (4.26)

which is held for all x and y from some set we get

P (v∗) ≤ P (w) ∀w ∈ Ω,

i.e. v∗ is minimum P (v) on Ω. Let us apply (4.26) to (4.24),then we have

S(v∗, v∗) ≤ S(v∗, w) ∀w ∈ Ω,

i.e. v∗ ∈ Ω∗ is the equilibrium solution. In the case of symmetric equilibrium problem
from (4.20) we get P (v) = S(v, v) + C.

The symmetric equilibrium problems are tightly connected to optimization problems.
Therefore we shall restate the notion of sharpness of minimum [37] that is useful later
on. It is called that function S(v, v) on Ω has 1 + ν order of sharpness for the minimum
v∗ ∈ Ω∗, if the following condition is held

S(w,w)− S(v∗, v∗) ≥ γ1|w − v∗|1+ν ∀w ∈ Ω, (4.27)

where γ1 ≥ 0 is the constant. If ν = 0 or ν = 1, then the minimum is called sharp or
quadratic accordingly.

4. Anti-symmetric functions. Remember that the anti-symmetric function K(v, w)
is characterized by condition (4.11), which is true for any pairs v, w ∈ Ω × Ω. In partic-
ular, suppose v = w, then we obtain K(v, v) = −K(v, v), i.e. K(v, v) = 0 for all v ∈ Ω.
The latter means that the anti-symmetric function K(v, w) is identically equal to zero on
the diagonal of square Ω × Ω. Taking into account this circumstance, we shall rewrite
condition (4.11) as

K(w,w)−K(w, v)−K(v, w) + K(v, v) = 0 ∀v ∈ Ω, ∀w ∈ Ω. (4.28)

As an example we specify a normalized function Φ(v, w) of the saddle point problem
(4.3), which satisfies relations [26]

Φ(v, v) = 0, Φ(v, w) + Φ(w, v) = 0 ∀w ∈ Ω, v ∈ Ω.
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From these conditions it follows immediately (4.28). The earlier attempt to generalize
these conditions to non-saddle point problems was considered in [38]. Ratios (4.10), (4.11)
and (4.28) describe properties of symmetry and anti-symmetry of function Φ(v, w). They
are the important characteristics, therefore their reasonable generalizations represent the
significant interest. With this purpose we introduce the following

Definition 2 . A function K(v, w) from Rn × Rn to R1 is skew-symmetric on Ω× Ω if
it satisfies the inequality

K(w,w)−K(w, v)−K(v, w) + K(v, v) ≥ 0 ∀v ∈ Ω, ∀w ∈ Ω. (4.29)

The totality of all anti-symmetric functions is the subset of skew-symmetric ones.
The combination of skew-symmetry and monotonicity properties gives us a capabil-

ity to assert the important fact of monotonicity of contraction for the partial gradient
∇wK(v, w) |w=v on the diagonal of the square Ω× Ω.

If we apply convexity condition (4.26) to (4.29), then we get

〈∇wK(w, w)−∇wK(v, v), w − v〉 ≥ 0 ∀w ∈ Ω, v ∈ Ω. (4.30)

Thus, it is proved following

Property 3 . If the function K(v, w) is skew-symmetric and convex in w ∈ Ω, then the
contraction of its partial gradient ∇wK(v, v) is monotone on the diagonal of square Ω×Ω.

In particular, if K(v, w) is a normalized function of a saddle point problem (4.3), then
it follows from (4.30) that (−∇xL(x, y), ∇yL(x, y))T is the monotone operator. This fact
was established yet in [39].

Some symmetric functions have a skew-symmetric property as well. Indeed, let us con-
sider the subset of functions subjected to the condition: S(v, w) ≤

√
S(w, w)S(v, v) ∀v, w ∈

Ω×Ω. Take the expression of the left-hand side of inequality (4.29) and then, using (4.14)
and the condition introduced, we transform it: S(w, w) − S(w, v) − S(v, w) + S(v, v) =
S(w,w) − 2S(w, v) + S(v, v) ≥ S(w,w) − 2

√
S(w, w)S(v, v) + S(v, v) = (

√
S(w, w) −√

S(v, v))2 ≥ 0 ∀v, w ∈ Ω. From here it follows that if S(v, w) is convex in w for any
v ∈ Ω, then ∇wS(v, v) is the monotone operator.

This brings us to the question of whether it is possible to tell anything about properties
of the equilibrium solution for problem (4.1) in the case when the objective function is
skew-symmetric, i.e. Φ(v, w) ≡ K(v, w) ∀v ∈ Ω, w ∈ Ω? Suppose v = v∗ at (4.29), then

K(w, w)−K(w, v∗)−K(v∗, w) + K(v∗, v∗) ≥ 0 ∀w ∈ Ω. (4.31)

Taking into consideration (4.2), we have from (4.31)

K(w, w) ≥ K(w, v∗) ∀w ∈ Ω. (4.32)

This implies that any equilibrium solution of problem (4.1) with skew-symmetric ob-
jective function K(v, w) satisfies condition (4.32).

Inequalities (4.2) and (4.32) are basic in the convergence analysis of methods to solve
the skew-symmetric problem (4.1). Therefore, their possible generalizations are of interest.
One of these generalizations consists of the following: substitute inf{...} and sup{...} for
left-hand side of inequalities (4.2) and (4.32), then
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inf{K(w, w) | w ∈ Ω} ≤ K(v∗, w), (4.33)

K(w, v∗) ≤ sup{K(w, w) | w ∈ Ω}. (4.34)

The inequality (4.33) is equivalent to the Caccutani theorem about the existence of a fixed
point for an upper semicontinuous map on a compact set and it was offered Ky Fan [40].
In the case sup{...} = inf{...} = K(v∗, v∗) both inequalities are possible to consider as a
generalization of the concept for a saddle point.

We rewrite inequalities (4.2) and (4.32) as the following system

K(w, v∗)−K(w,w) ≤ K(v∗, v∗)−K(v∗, v∗) ≤ K(v∗, w)−K(v∗, v∗) ∀w ∈ Ω. (4.35)

Let us introduce a function Ψ(v, w) = K(v, w)−K(v, v) and present a system of inequal-
ities (4.35) in the form

Ψ(w, v∗) ≤ Ψ(v∗, v∗) ≤ Ψ(v∗, w) ∀w ∈ Ω. (4.36)

Hence it follows, that v∗, v∗ is the saddle point for the function Ψ(v, w) on Ω × Ω. And
Ψ(v∗, v∗) = 0. Note that the function Ψ(v, w) is almost never convex-concave even in the
case, if K(v, w) is convex-concave.

There are the classes of skew-symmetric functions K(v, w) and the equilibrium prob-
lems such that solutions of them satisfy inequalities more rigid than (4.36), namely

Ψ(w, v∗) ≤ −γ2|w − v∗|1+ν ∀w ∈ Ω, (4.37)

and (or)
γ2|w − v∗|1+ν ≤ Ψ(v∗, w) ∀w ∈ Ω, (4.38)

where v∗ ∈ Ω∗ is the solution of the problem, γ2 ≥ 0 and ν ∈ [0,∞] are parameters. Let
us copy (4.37) as

K(w, w)−K(w, v∗) ≥ γ2|w − v∗|1+ν ∀w ∈ Ω. (4.39)

We shall call the inequality obtained a sharpness condition of skew-symmetric equilib-
rium. If γ2 > 0, then under ν = 0 and ν = 1 we have sharp and quadratic equilibrium
accordingly. If γ2 = 0 we have (4.32) [27],[28].

5. Prediction gradient method. Consider equilibrium problem (4.1). It is known
that the fixed point v∗ ∈ Ω∗ of this problem is the solution both a variational inequality

〈∇wΦ(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω, (4.40)

and a operator equation

v∗ = πΩ(v∗ − α∇wΦ(v∗, v∗)), (4.41)

where α > 0, and πΩ(...) is the projection operator of some vector on a set Ω. Both
relations are equivalent and they are a necessary condition of a minimum for function
Φ(v∗, w) on the set Ω.
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For solving of variational inequality (4.40) or operator equation (4.41) we use the
prediction gradient method [36]

dv

dt
+ v = πΩ(v − α∇wΦ(ū, ū)),

ū = πΩ(v − α∇wΦ(v, v)). (4.42)

The iterative analog of this process has the form [28]

ūn = πΩ(vn − α∇wΦ(vn, vn)),
vn+1 = πΩ(vn − α∇wΦ(ūn, ūn)).

.

If the function Φ(v, w) in method (4.42) is the linear convolution of saddle point
problem (4.3), then it is presented as Φ(v, w) = L(z, p) − L(x, y), and method takes the
form

dx

dt
+ x = πQ(x− α∇xL(x, p̄)),

dp

dt
+ p = πP (p + α∇pL(x̄, p)),

where

p̄ = πP (p + α∇pL(x, p)),

x̄ = πQ(x− α∇xL(x, p)).

The obtained method differs from (3.10) that considered above.
To prove the convergence of method (4.42) we need of having of properties of potential-

ity and monotonicity for operator∇wΦ(v, v). Unfortunately, this operator is non-potential
and non-monotone in many cases and therefore method (4.42) dos not converges to fixed
point of (4.1). It is shown on next block-scheme.

FEEDBACK LIPSCH.CON.

µ ´³¶

@@ ¡¡

No convergence of methods

Fig.4

It is useful to compare this block-scheme to the analogous block-scheme of saddle
gradient method

6. Monotone convergence.
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We show above that any objective function Φ(v, w) of problems (4.1) can be decom-
posed by a unique manner in a sum of two projections: symmetric S(v, w) and anti-
symmetric K(v, w). This expansion plays the important role under justifying of conver-
gence of prediction gradient method (4.42). However it is necessary for that to attract
some properties of convexity of functions S(v, w) and K(v, w). The last circumstance
narrows a class of solvable equilibrium problems, since the convexity of an anti-symmetric
function K(v, w) in w ∈ Ω means that this function is saddle point one and the convexity
of a symmetric function S(v, w) on a diagonal of square Ω × Ω means that ∇S(v, v) is
monotone operator.

To expand a class of solvable problems with maintenance of convergence properties
of prediction gradient method (4.42) we shall enlarge the classes of symmetric and anti-
symmetric functions to up pseudosymmetric (i.e. subjected to condition (4.20)) and
skew-symmetric functions. Thus, certainly, the uniqueness condition of expansion will
not be executed but in this case it is good only as among totality of expansions some of
them can have the properties of convexity which is necessary to prove the convergence.
We note, since any objective function can be presented as a sum of symmetric and anti-
symmetric functions in a unique way but these classes are subsets of pseudosymmetric
and skew-symmetric functions, consequently, any function can be decomposed in a sum
of two representatives from these last classes. And this expansion is not unique.

In this section we shall assume that the objective function has representation of the
kind

Φ(v, w) = S(v, w) + K(v, w), (4.43)

where S(v, w) and K(v, w) are subordinated to conditions (4.20) and (4.29) accordingly.
Thus we shall in addition require the convexity K(v, w) on the second variable and the
convexity S(v, w) on a diagonal of main square. The last circumstance is associated with
that contraction of symmetric convex in w (and, therefore, in v) function S(v, w) on
diagonal of square Ω× Ω can be not convex.

Really, suppose S(v, w) = 〈v,Aw〉, where v ∈ R2, w ∈ R2, and the matrix A has
dimensionality of 2 × 2. This function is linear in its variables and, therefore, is convex
in them. Will the function 〈v, Av〉 there be convex on R2 ? It depends on a kind of a

matrix A. If the matrix has the type A =

(
1 0
0 1

)
, then the function convex, and if a

matrix has a structure of the kind A =

(
0 1
1 0

)
, then the function is not convex.

So, in general case S(v, w) and K(v, w) belong to classes of pseudosymmetric and
skew-symmetric functions. In particular, it is not excepted that they will be symmetric
and anti-symmetric ones. In the latter case a potential has a form P (v) = Φ(v, v), and
K(v, v) is the saddle function, if, certainly, K(v, w) is convex in w ∈ Ω.

From representation (4.43) we have

∇wΦ(v, w)|w=v = ∇wS(v, w)|w=v +∇wK(v, w)|w=v. (4.44)

In case of a differentiability it follows from (4.2) necessary condition of a minimum

〈∇wΦ(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω. (4.45)

Taking into account (4.44) and (4.20) this condition can be presented as

1

2
〈∇P (v∗), w − v∗〉+ 〈∇wK(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω. (4.46)

20



Now, if the function P (v) is convex, and K(v, w) is convex in w ∈ Ω at any v ∈ Ω,
from (4.23) and (4.30) we have

〈1
2
∇P (w) +∇wK(w, w)− 1

2
∇P (v∗)−∇wK(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω. (4.47)

From here using (4.46), we obtain

〈1
2
∇P (w) +∇wK(w, w), w − v∗〉 ≥ 0 ∀w ∈ Ω. (4.48)

Allowing (4.20) and (4.44) this inequality can be rewrite as

〈∇wΦ(w, w), w − v∗〉 ≥ 0 ∀w ∈ Ω. (4.49)

Inequality (4.49) is sufficient for the substantiation of convergence of method (4.42)
and it could be used in the formulation of the theorem about convergence as of the most
common condition guaranteeing the convergence of method. However this condition is
nonconstructive (not verifyed) as contains the unknown vector v∗. To give to the theorem
the seminal character we use the conditions of convexity for functions S(v, w) and K(v, w)
instead of (4.49). Besides we will need to use the Lipschitz condition in the form

|∇wΦ(v + h, v + h)−∇wΦ(v, v)| ≤ L|h|, (4.50)

for all v + h and v from some set. With the help of these inequality an evaluation for
vectors from (4.42) follows

|ūn − vn+1| ≤ α|∇wΦ(vn, vn)−∇wΦ(ūn, ūn)| ≤ αL|vn − ūn|. (4.51)

We express (4.42) in the form of variational inequalities

〈v̇ + α∇wΦ(ū, ū), w − v − v̇〉 ≥ 0 ∀w ∈ Ω, (4.52)

〈ū− v + α∇wΦ(v, v), w − ū〉 ≥ 0 ∀w ∈ Ω. (4.53)

If the anti-symmetric component in expansion (4.43) is away, then problem (4.1) is
reduced to the minimization one for function S(v, v) on Ω, and the proven theorem justifies
convergence of prediction gradient method (4.42) to a optimal point. This fact is a
particular demonstration of a more general situation, which is, that the problems of
nonlinear programming are a subset of equilibrium programming [41], i.e. problems
such that it is required to compute a fixed point of extremal mapping under functional
constraints. In this case the theory of methods of optimization problems is included in a
general methodology of equilibrium programming methods.
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The full list of conditions sufficient for monotone convergence of the method is con-
tained by the following theorem.

Theorem 3 If a set Ω ∈ Rn is convex, closed; the object function Φ(v, w) is differentiable
and its gradient ∇wΦ(v, w) in w ∈ Ω satisfies to condition (4.50), the function has repre-
sentation of a kind (4.43), where ∇Sw(v, w) |w=v is the potential operator, and a potential
P (v) is convex; K(v, w) is function convex in w ∈ Ω; then the trajectory v(t), generated
by method (4.42) with parameter 0 < α <

√
3/(2L) converges monotonically under the

norm of space to the solution of variational inequality (4.45).
If in addition to listed conditions the function Φ(v, w) is convex in w ∈ Ω for any v ∈

Ω, then the method converges monotonically under the norm to the equilibrium solution
of problem (4.1).

Putting w = v∗ ∈ Ω∗ in (4.52), we get

〈v̇ + v − v + α∇wΦ(ū, ū), v∗ − v − v̇〉 ≥ 0. (4.54)

Using (4.50),(4.51), we transform the following addend separately

〈∇wΦ(ū, ū), v∗ − v − v̇〉 = 〈∇wΦ(ū, ū), v∗ − ū〉+ 〈∇wΦ(ū, ū), ū− v − v̇〉 ≤
≤ 〈∇wΦ(ū, ū), v∗ − ū〉 − 〈∇wΦ(v, v)−∇wΦ(ū, ū), ū− v − v̇〉+

+〈∇wΦ(v, v), ū− v − v̇〉 ≤ 〈∇wΦ(ū, ū), v∗ − ū〉+
+αL2|v − ū|2 + 〈∇wΦ(v, v), ū− v − v̇〉.

In view of an obtained estimate we shall rewrite (4.54) as

〈v̇, v∗ − v〉 − |v̇|2 + α〈∇wΦ(ū, ū), v∗ − ū〉+
+(αL)2|v − ū|2 + α〈∇Φw(v, v), ū− v − v̇〉 ≥ 0. (4.55)

Let’s assume w = v + v̇ in (4.53). Then

〈v̇, ū− v〉 − |ū− v|2 + α〈∇wΦ(v, v), v + v̇ − ū〉 ≥ 0. (4.56)
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We add (4.55) and (4.56), then

1

2

d|v − v∗|2
dt

+ |v̇|2 − 〈v̇, ū− v〉+ d2|ū− v|2 + α〈∇wΦ(ū, ū), ū− v∗〉 ≤ 0. (4.57)

where d2 = 1 − (αL)2 > 0, since α < 1/L. Let us single out the perfect square from the
third and fourth terms

1

2

d |v − v∗|2
dt

+ d1|v̇|2 +

∣∣∣∣
1

2
√

d2

v̇ +
√

d2(v − ū)

∣∣∣∣
2

+

+α〈∇Φw(ū, ū), ū− v∗〉 ≤ 0, (4.58)

where d1 = 1− 1/(4d2) > 0, as 0 < α <
√

3/(2L).
Using (4.44), (4.20) and conditions of convexity of S(v, w) and K(v, w) we estimate

the fourth term by means of (4.48)

〈∇wΦ(ū, ū), ū− v∗〉 = 〈1
2
∇P (ū) +∇wK(ū, ū), ū− v∗〉 ≥ 0,

then

1

2

d|v − v∗|2
dt

+ d1|v̇|2 +

∣∣∣∣
1

2
√

d2

v̇ +
√

d2(v − ū)

∣∣∣∣
2

≤ 0. (4.59)

We integrate inequality from t0 to t

|v − v∗|2 + 2d1

∫ t

t0

|v̇|2dτ + 2

∫ t

t0

∣∣∣∣
1

2
√

d2

v̇ +
√

d2(v − ū)

∣∣∣∣
2

dτ ≤ |v0 − v∗|2. (4.60)

From here it follows the boundedness of the trajectory |v − v∗|2, monotone decreasing of

v(t), and convergence of integrals
∫ t

t0
|v̇|2dτ < ∞,

∫ t

t0

∣∣∣ 1
2
√

d2
v̇ +

√
d2(v − ū)

∣∣∣
2

dτ < ∞.

Since the trajectory v(t) is bounded, there exist a subsequence vti and point v
′
such

that vti → v
′
as ti →∞, and thus vti+1 → v

′
, ūti → v

′
.

Consider equations (4.42) at t = ti and, passing to the limit, we shall get a necessary
condition (4.41). The condition of a monotonicity of decrease of value |v(t)− v∗| provides
uniqueness a limit point, i.e. convergence v(t) → v∗ as n →∞.

If in addition to conditions of the theorem 3 functions Φ(v, w) is convex in w ∈ Ω for
any v ∈ Ω, then according to (4.26) point v∗ is the equilibrium solution of problem (4.1).
The theorem is proved.

Thus, it is established, in particular that if a function S(v, v) is convex and K(v, w)
is concave-convex, the method (4.42) monotonically converges under the norm of space
to the solution of variational inequality (4.40). In the case of convexity Φ(v, w) in w the
obtained limit point is the equilibrium solution of the problem (4.1).

23



References

[1] Al’ber, Ya.I. (1971). Newton-type continuous process. Differentsial’nye Uravneniya,
7, 11, 1931–1945 (in Russian).

[2] Rybashev, M.V. (1974). Stable of gradient system. Automation and Remote Control.
No.9, 12–18.

[3] Venets, V.I.(1979). Differential inclusion in convex problem Automation and Remote
Control No.9, 5–14.

[4] Karpinskaya, N.N. and Rybashev,M.V. (1973). On continuous algorithms using a
modified Lagrange function. Automation and Remote Control. No.9, 16–21.

[5] Vasil’ev, F.P. (1988). Numerical methods for extremal problems. Moscow. Nauka.;
(in Russian).

[6] Vasil’ev, F.P. (1981). Methods for solving of extremum problem. Moscow. Nauka.;
(in Russian).

[7] Brown, A.A. and Bartholomew-Biggs,M.C. (1989). Some effective methods for un-
constrained optimization based on the solution of systems of ordinary differential
equations. J. Optimization Theory Applications. Vol.62, No.2, 211–224.

[8] Antipin, A.S. (1989). Continuous and iterative processes with projection and
projection-type operators. Problems of Cybernetics. Computational Problems of the
Analysis for Large Systems. Moscow. Acad. USSR. 5–43 (in Russian).

[9] Rosen, J. (1960) The gradient projection method for nonlinear programming, part
1, linear constraints. SIAM J. Applied Math. Vol.8, 181–217.

[10] Evtushenko Yu.G., Zhadan V.G. (1973). Numerical methods for solving some oper-
ations research problems. U.S.S.R. Comput. Math. Phys., Vol.13, No.3, 56–77.

[11] Evtushenko, Yu.G., Zhadan, V.G. (1978). A relaxation method for solving problems
of nonlinear programming. U.S.S.R. Comput. Math. Phys., Vol.17, No.4, 73–87.

[12] Tanabe, K. (1979). Differential geometric methods for solving nonlinear constrained
optimization problems and a related system of nonlinear equations: Global analysis
and implementation. Proceeding of the International Congress on Numerical Methods
for Engineering, Eds. E.Absi and R.Glowinski . Dunod, Bordas, Paris, 548-556.

[13] Tanabe, K. (1980). Geometric method in nonlinear programming. J. Optim.Theory
and Appl., Vol.30. No.2, 181–210.

[14] Antipin, A.S. (1994) Linearization method. Nonlinear Dynamic Systems: Qualitative
Analysis and Control. The collection of Transactionses. Institute for Systems Analy-
sis. No.2, 4–20. English transl.: Computational Mathematics and Modelling. Plenume
Publish. Corp. N.Y. 1997. Vol.8.

24



[15] Antipin, A.S. (1993) An interior linearization method. Zhurnal vychisl. mat. i mat.
fiz.. T.33. No.12, 1776–1791. English transl.: Comp.Maths.Math.Phys. 1993. Vol.33.
No.12, 1555–1568.

[16] Polyak, B.T. (1973). Introduction to Optimization. Moscow. Nauka.

[17] Golshtein,E.G. and Tretyakov,N.V. (1996). Modified Lagrangens and monotone maps
in optimization. J.Willy. N.Y.

[18] Tanaka, T. (1990). A characterization of generalized saddle points for vector-valued
functions via scalarization. Nihonkai Math Journal Vol.1 No.2, 209–227.

[19] Tanaka, T. (1994). Generalized quasiconvexities, cone saddle points, and minimax
theorem for vector-valued functions. J. of Optimization Theory and Applications.
Vol.81. No.2, 355–377.

[20] Zhukovskii, V.I. and Salukvadze, M.E. (1994). The Vector-Valued Maximum. Aca-
demic Press. N.Y. 404.

[21] Zhukovskii, V.I. and Molostvov V.S. (1990). Multiple Criteria Optimization for Sys-
tem under Uncertainty. MNIIPU. Moscow. 111 (in Russian).

[22] Smol’jakov E.R. (1986). Equilibrium Models with Non-Coincident Interests of Par-
ticipants. Nauka. Moscow (in Russian).

[23] Errow, K.J., Hurvicz, L. and Udzava, H. (1958). Sludies in Linear and Nonlinear
Programming, Stanford, California.

[24] Antipin, A.S. (1994). Minimization of convex functions on convex sets by means of
differential equations. Differentsial’nye Uravneniya. T.30. No.9, 1475-1486. English
transl.: Differential Equations. 1994. Vol.30. No.9, 1365–1375.

[25] Antipin, A.S. (1994). Feedback-controlled saddle gradient processes. Avtomatika i
telemechanika. No.3, 12-23. English transl: Automation and Remote Control. 1994.
Vol.55. No.3, 311–320.

[26] Antipin, A.S. (1992). Controlled Proximal Differential Systems for Saddle Problems.
the Differentsial,nye Uravneniya. T.28. No. 11, 1846-1861. English transl.: Differen-
tial Equations. 1992. Vol.28. No.11, 1498–1510.

[27] Antipin, A.S.(1995), The convergence of proximal methods to fixed points of extremal
mappings and estimates of their rate of convergence. Zhurnal vychisl.mat. i mat.fiz
35,5,688-704. English transl.: Comp.Maths.Math.Phys (1995), 35, 5, 539–551.

[28] Antipin, A.S.(1997), Calculation of fixed points of extremal mappings by gradient-
type methods Zhurnal vychisl. mat. i mat. fiz , 37, 1, 42–53. English transl.:
Comp.Maths.Math.Phys, (1997), 37, 1, 40–50.

[29] Aubin, J.-P. and Frankowska, H.(1990), Set valued analysis. Birkhauser.

25



[30] Antipin, A.S. (1992), Inverse problems of nonlinear programming. In: Inverse Prob-
lems of Mathematical Programming. Moscow. Computing Center RAS, 4-58. English
transl:Computational Mathematics and Modelling (1996), Plenum Publishing Corpo-
ration, 7, 263–287.

[31] Migdalas, A and Pardalos, P.M. (1996), Editors: Hierarchical and bilevel program-
ming. J. Of Global Optimization 8, 209–215.

[32] Outrata, J.V. (1994), On optimization problems with variational inequality con-
straints. SIAM J. Optimization 4, 2, 340–357.

[33] Harker, P.T and Pang J.S. (1990), Finite dimensional variational inequality and non-
linear complementarity problems: A survey of theory, algorithms and applications.
Mathematical Programming 48, 161–220.

[34] Kaplan, A. and Tichatschke, R. (1997), Multi-step proximal method for variational
inequalities with monotone operators. Recent Advances in Optimization. Lecture
Notes in Economics and Mathematical Systems. Vol.452. Springer Verlag.

[35] Blum, E. and Oettli, W. (1993), From optimization and variational inequalities to
equilibrium problems. The Mathematics Student 63, 1–4, 1–23.

[36] Antipin, A.S. (1995), On differential prediction-type gradient methods for computing
fixed points of extremal mappings. Differentsial’nye Uravneniya (1995), 31, 11, 1786-
1795. English transl.: Differential Equations 31, 11, 1754–1763.

[37] Antipin, A.S. (1995), On convergence rate estimation for gradient projection method.
Izvest. VUZov. Matematika 6, 16-24. English transl.:Russian Mathematics (Iz. VUZ)
(1995) 39, 6, 14–22.

[38] Belenky, V.Z. and Volkonsky, V.A. (1974), Iterative methods in game theory and
programming. Moscow. Nauka.

[39] Rockafellar, R.T. (1970), Convex analysis. New Jersey.

[40] Fan, Ky (1972), A minimax inequality and applications. Inequalities III. Acad. Press,
103–113.

[41] Antipin, A.S. (1997), Equilibrium programming problems: prox-regularization and
prox-methods. Recent Advances in Optimization. Lecture Notes in Economics and
Mathematical Systems, Vol.452, Springer Verlag, 1–18.

26


