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Methods of control of saddle gradient di�erential systems under the constraints imposed on
control functions and state variables are put forward. Asymptotic stability of the set of
equilibrium states is proved for controllable systems.

In [1] it is rightly noted that the problem of synthesis of control laws for nonlinear objects
(systems) is a principal problem. There are a large number of studies devoted to the problem
of stabilization of programmed motion. However, the solution to this problem is still far from
complete. The methods of global stabilization are worked out insu�ciently, while the methods
in which account is taken of the constraints on control functions and state variables are as yet
quite imperfect.

In this work we consider the synthesis of control laws for nonlinear objects whose set of equi-
librium states is de�ned by the problems of convex programming or degenerate saddle functions.
These problems are of practical importance and pertain to the theory of multiply connected
nonlinear systems [2].

The stabilization algorithms presented in the paper are inherently global and what is impor-
tant is that they use the projection operator to account for the presence of constraints imposed
on the control functions and state variables.

1. STATEMENT OF THE PROBLEM

We consider the situation where the statics of a multiply connected nonlinear object is de-
scribed by a saddle function L(x, p), where x ∈ Q ⊆ Rn and p ∈ P ⊆ Rm and the dynamics of
this object is de�ned by a saddle gradient system. The problem of stabilization of an equilib-
rium state determined by a saddle point consists in synthesis of the control laws in the form of
feedback controls that would bring the multiply connected controlled object to an equilibrium
state in the course of time.

In the general case, the equilibrium state x∗, p∗, which is the solution to the stabilization
problem, is given by the system of inequalities

L(x∗, p) ≤ L(x∗, p∗) ≤ L(x, p∗) (1)
for all x ∈ Q ⊆ Rn and p ∈ P ⊆ Rm, where L(x, p) is a function convex in x and concave in p.
The sets Q and P are convex closed sets.

In particular, the saddle function can be a Lagrange function L(x, p) = f(x) + 〈p, g(x)〉 of
the problem of convex programming

x∗ ∈ argmin {f(x) : g(x) ≤ 0, x ∈ Q}. (2)
Assuming that the function L(x, p) is di�erentiable, we write out necessary and su�cient

conditions under which the solution to the system (1) exists:
x∗ = πQ(x∗ − α∇Lx(x∗, p∗)), p∗ = πP (p∗ + α∇Lp(x∗, p∗)), (3)
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where πQ(·) and πP (·) are the operators of projection of vectors on the sets Q and P , respectively,
and ∇Lx(x, p) and ∇Lp(x, p) are the vector gradients of the function L(x, p) in the variables x
and p, respectively.

The point x∗, p∗ is a �xed point or an equilibrium point. System (3) has a simple geometric
meaning. Let x∗, p∗ be an equilibrium point. Then, on taking a step from the point x∗, p∗ in
the direction of a partial gradient (antigradient) of the saddle function L(x, p), we again move
to the point x∗, p∗ after the projection. Systems (1) and (3) are equivalent to each other.

If the saddle function is a Lagrange function of convex programming problem (2), i.e.,
L(x, p) = f(x) + 〈p, g(x)〉, then in view of linearity of the function in the variable p, we have
∇Lp(x, p) = g(x), and because the set P coincides with the positive orthant, i.e. P = (Rm)+,
system (3) takes the form

x∗ = πQ(x∗ − α∇Lx(x∗, p∗)), p∗ = π+(p∗ + αg(x∗)), (4)

where π+(·) is the operator of projection on P = (Rm)+ and the parameter α > 0.
The residual, i.e., the di�erence between the left and the right side of (3), which is equal to

zero at the point x∗, p∗ and not equal to zero at an arbitrary point x, p, speci�es a mapping of
the set Rn × Rm into Rn × Rm. The resultant image can be viewed as a vector �eld with the
�xed point x∗, p∗. Given a vector �eld, we state the problem of drawing the trajectory so that
its tangent line coincide with the speci�ed direction of the �eld at that point. Formally, this
problem is written as the system of di�erential equations

dx

dt
= πQ(x− α∇Lx(x, p))− x,

dp

dt
= π+(p + α∇Lp(x, p))− p. (5)

Because the partial derivatives ∇Lx(x, p) and ∇Lp(x, p) are monotonic operators, where
L(x, p) is a convex-concave function, and, by de�nition, satisfy the Lipschitz condition, while the
operators πQ(·) and πP (·) are unextending operators, system (5) generates the trajectory x(t),
p(t) for all x(t0) = x0 and p(t0) = p0, in accordance with the existence and uniqueness theorem,
at any t ≥ t0.

If Q = Rn and P = Rm, then πQ(·) and πP (·) are unit operators and system (5) assumes the
form [3]

dx

dt
= −α∇Lx(x, p),

dp

dt
= α∇Lp(x, p). (6)

If L(x, p) is a Lagrange function of a convex programming problem, system (5) in view of (4)
has the form [4, 5]

dx

dt
+ x = πQ(x− α∇Lx(x, p)),

dp

dt
+ p = π+(p + αg(x)). (7)

If g(x) ≡ 0 in (2), we obtain the continuous method of gradient projection [6, 7, 8] for
optimization of f(x) on the set Q:

dx

dt
+ x = πQ(x− α∇f(x)). (8)

Other approaches to the study of continuous gradient methods are treated in [9, 10, 11].
The question of whether the trajectory of process (5) and that of its modi�cations will tend

to one of the equilibria of the system as t → ∞ now arises. The answer to this question is
easy to arrive at by considering the simplest example. Let the saddle function have the form
L(x, p) = x · p. The origin of coordinates is then a saddle point of this function and satis�es
the inequality 0 · p ≤ 0 · 0 ≤ x · 0 for all x ∈ R1 and p ∈ R1. The saddle gradient method with
account for descent in one variable and ascent in the other has the form

dx

dt
= −αp,

dp

dt
= αx, α > 0, x(t0) = x0, p(t0) = p0. (9)
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Hence we have xdx + pdp = 0 or x2 + p2 = r2, i.e., the trajectories of the method, which
represent concentric circles, do not converge to zero. The nonconvergence of the method stems
from the fact that the operator F (x, p) = (−p, x)> is not potential, although F1(x, p) = (p, x)>

is a potential operator [12] and is a gradient for L(x, p). To rule out the situation described by
(9), the notion of Γ-stability was introduced in [11].

In this example, the equilibrium point is an equilibrium of the �center� type and, therefore,
it is not asymptotically stable, although this point is stable in the sense of Lyapunov. A small
deformation of the phase portrait may change the property of equilibrium, for example, convert
the asymptotically unstable �center� to an asymptotically stable node. The requisite deformations
of phase portraits can evidently be obtained by many methods. One fruitful idea is the concept
of control of dynamic systems with the aid of feedback loops. In the present work we examine
gradient processes, with proximal ones being treated in [13].

2. GRADIENT PROCESSES CONTROLLED BY RESIDUALS AND DERIVA-
TIVES

We shall regard the feedback loops as functions dependent on the phase coordinates and
velocities of the system, i.e., u = u(x, p, ẋ, ṗ) and v = v(x, p, ẋ, ṗ), where ẋ = dx/dt, ṗ = dp/dt,
and x ∈ Q, p ∈ P . By de�nition, these functions are equal to zero at equilibrium points.

We introduce the additive controls u and v in gradient system (5) so as to obtain

dx

dt
+ x = πQ(x− α∇Lx(x, p + u)),

dp

dt
+ p = πP (p + α∇Lp(x + v, p)) (10)

and state the following problem. In a certain class of feedback functions u = u(x, p, ẋ, ṗ) and
v = v(x, p, ẋ, ṗ) we must select the controls as state functions of the dynamic system (10) that
would ensure convergence of the trajectory x(t), p(t) to an equilibrium point. In other words, we
need to synthesize the control algorithm that would transfer the system (10) from an arbitrary
initial state x0, p0 to an equilibrium state x∗, p∗ in an in�nite time interval.

The feedback functions u = u(x, p, ẋ, ṗ) and v = v(x, p, ẋ, ṗ) can be thought of either as the
position of the �rudders� of an object that moves along the trajectory of interest or as the vector
of energy to be expended to maintain the �rudders� in the speci�ed position. At the point of
equilibrium the object is stationary and its velocities ẋ, ṗ are equal to zero, so that the energy
consumption in equilibrium is zero: u = u(x∗, p∗, ẋ∗, ṗ∗) = 0, v = v(x∗, p∗, ẋ∗, ṗ∗) = 0. This is
perhaps the only requirement placed on the controls, following from the essence of the situation.
In every other respect the controls can be arbitrary.

The simplest controls have the form [5]

u = ṗ, v = ẋ (11)

and express a simple idea: the energy spent on control of a motion is proportional to the velocity
vector. On substituting (11) into (10), we obtain a di�erential system of implicit form, i.e., a
system not resolvable relative to the derivatives:

dx

dt
+ x = πQ(x− α∇Lx(x, p + ṗ)), x(t0) = x0,

dp

dt
+ p = πP (p + α∇Lp(x + ẋ, p)), p(t0) = p0.

(12)

An iterated analog of this system is an implicit iterative process of the form

xn+1 = πQ(xn − α∇Lx(xn, pn+1)), pn+1 = πP (pn + α∇Lp(xn+1, pn)). (13)

Here xn, pn are the approximation found previously, and the system must be resolvable re-
lative to the variables xn+1, pn+1. In turn, some other iterative processes are needed to solve
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this problem. Experience in solving equations of mathematical physics using implicit di�erence
schemes indicates that the amount of computations required to solve an auxiliary subproblem
can be appreciable. Nevertheless, the total amount of computations necessary to solve the initial
problem often proves much smaller than if an explicit iterative process were used. Furthermore,
the accuracy of the solution obtained with the aid of explicit iterative processes is generally much
higher.

To prove the convergence of any gradient method, it is necessary that the gradient satisfy
the Lipschitz condition. In the case of process (12), to ful�ll the Lipschitz condition, we resort
not to the gradient of the function L(x, p), but to the partial gradients ∇Lx(x, p) and ∇Lp(x, p)
expressed in the form

ϕ(x + h)− ϕ(x)− 〈∇ϕ(x), h〉 <
1
2

L|h2| (14)

for all x and x + h from Q. If we write out this inequality for the partial gradient ∇Lx(x, p) of
the function L(x, p), the Lipschitz constant of this inequality will depend on the variable p. In
a similar way, the Lipschitz constant of the other inequality will depend on the variable x.

In the subsequent discussion we will consider the function L(x, p) and sets Q and P for which
the above constants do not depend on the variables. This requirement is always met if the second
partial derivatives of the function L(x, p) are continuous and bounded on the sets Q and P , so
that the requirement is not too rigid. The above requirement is also met in the case where the
gradient of the function L(x, p) ful�lls the Lipschitz condition with respect to the aggregate of
variables x and p on the set Q× P .

Thus, suppose that

L(x + h, p)− L(x, p)− 〈∇Lx(x, p), h〉 ≤ 1
2

L1|h|2 (15)

for all x and x + h from Q and p from P , and

L(x, p + h)− L(x, p)− 〈∇Lp(x, p), h〉 ≥ 1
2

L2|h|2 (16)

for all p and p + h from P and x from Q.
We prove that the process (10), (11) is asymptotically stable.

Theorem 1. If the set X∗×P ∗ of equilibrium points of system (1) is not empty, the partial
gradients ∇Lx(x, p) and ∇Lp(x, p) of the saddle function L(x, p) on the convex closed sets Q and
P satisfy Lipschitz conditions (15) and (16) with constants L1 and L2, and the parameter α is
chosen so that α < min {2/L1, 2/L2}, then the trajectory of process (12) converges monotonically
in norm to one of the equilibrium points, i.e. x(t) → x∗ ∈ X∗ and p(t) → p∗ ∈ P ∗ as t →∞ for
all x0 and p0.

Under these conditions, an iterative version of process (13) converges too. The proof of
Theorem 1 is given in Appendix 1.

If L(x, p) is a Lagrange function of a convex programming problem, inequality (16) reduces
to an identity in view of the linearity of this function in the dual variables. In this connection,
the constraints on the parameter α undergo changes and take the form α < 2/(L0 + 〈L,C〉),
where L0 is the Lipschitz constant of the gradient ∇f(x) of the objective function f(x), L is the
Lipschitz vector constant of the gradient ∇g(x) of the functional constraints g(x) ≤ 0, and C is
a constant limiting the trajectory p + ṗ for all t ≥ t0, i.e., p + ṗ ≤ C.

Duly acknowledging the advantages process (13), it is necessary to note once again its short-
coming, which appears in the implicit or unresolvable form of the process relative to the deriva-
tive.

To neutralize this shortcoming, we introduce controls relative to the residuals generated by
conditions (3):

u = πP (p + α∇Lp(x, p))− p, v = πQ(x− α∇Lx(x, p))− x. (17)
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Substituting controls (17) into system (10) yields

dx

dt
+ x = πQ(x− α∇Lx(x, ū)),

dp

dt
+ p = πP (p + α∇Lp(v̄, p)), (18)

where
ū = πP (p + α∇Lp(x, p)), v̄ = πQ(x− α∇Lx(x, p)). (19)

System (18), (19) is explicit, which is particularly evident from its iterative analog �rst
examined in [4]:

ūn = πP (pn + α∇Lp(xn, pn)), v̄n = πQ(xn − α∇Lx(xn, pn)) (20)

and
xn+1 = πQ(xn − α∇Lx(xn, ūn)), pn+1 = πP (pn + α∇Lp(v̄n, pn)). (21)

System (18), (19) and its iterative analog (20), (21) converge to an equilibrium point under
the same assumptions as for process (12).

3. GRADIENT PROCESSES WITH COMPOSITE CONTROLS

The a priori disadvantages of process (18), (19) are that it is cumbersome and rather ine�cient
as regards its rate of convergence. These disadvantages can be reduced appreciably by resorting
to composite controls. We will examine the gradient processes with composite controls as applied
to the Lagrange function L(x, p) = f(x) + 〈p, g(x)〉 of convex programming problem (2), i.e., a
saddle function that is linear in one of the variables. We consider composite controls of the form

u = π+(p + αg(x))− p, v = ẋ. (22)

On substituting (22) into system (10) we obtain

dx

dt
+ x = πQ(x− α∇Lx(x, ū)), (23)

dp

dt
+ p = π+(p + αg(x + ẋ)), (24)

ū = π+(p + αg(x)), x(t0) = x0, p(t0) = p0. (25)

An iterative analog of (23) � (25) is given as

ūn = π+(p + αg(xn)), xn+1 = πQ(xn − α∇Lx(xn, ūn)), pn+1 = π+(pn + αg(xn+1)). (26)

System (26) of recursion relations, �rst suggested in [15], has a simpler form than Eqs. (20) and
(21).

The following theorem enables us to prove that the equilibrium points of process (23) � (25)
are asymptotically stable.

Theorem 2. If the set X∗×P ∗ of equilibrium points of system (1) is not empty, the gradients
∇f(x) and ∇g(x) of the objective function and the functional constraints on the convex closed
set Q satisfy the Lipschitz condition with the constant L0 and the vector constant L, the map
g(x) satis�es the Lipschitz condition with the constant |g|, the trajectory ū = π+(p + αg(x)) for
all t ≥ t0 is bounded by the vector constant C, i.e., ū ≤ C, and the parameter α is chosen from
the condition

0 < α <
4

((L0 + 〈L,C〉)2 + 16|g|2)1/2 + (L0 + 〈L,C〉) ,

then the trajectory of process (23) � (25) converges monotonically in norm to one of the equilib-
rium points, i.e., x(t) → x∗ ∈ X∗ and p(t) → p∗ ∈ P ∗ as t →∞ for all x0 and p0.
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An iterative version of process (26) converges under the same conditions. The proof of
Theorem 2 is given in Appendix 2.

Let us establish the relationship between prognostic method (23) � (25) and the method in
which a step is �rst made in a regular variable and then another step is made in a dual variable
with account for the approximation obtained [15]. We substitute the vector ū of (25) into (23)
and transform separately the quantity∇Lx(x, π+(p+αg(x))) = ∇f(x)+∇g>(x)π+(p+αg(x)) =
= ∇Mx(x, p), in which the modi�ed Lagrange function has the form M(x, p) = f(x) + (1/2α)
|π+(p + αg(x))|2 − (1/2α)|p|2. In terms of the modi�ed Lagrange function, process (23) � (25)
now assumes the form

dx

dt
+ x = πQ(x− α∇Mx(x, p)),

dp

dt
+ p = π+(p + αg(x + ẋ)). (27)

Process (27) has a more compact form than (23) � (25).

Appendix 1

Proof of Theorem 1. Starting from the de�nition of the projection operator, we represent
system of di�erential equations (12) in the form of the variational inequalities

〈x + ẋ− x + α∇Lx(x, p + ṗ), z − x− ẋ〉 ≥ 0 (A.1.1)

for all z ∈ Q and
〈p + ṗ− p− α∇Lp(x + ẋ, p), y − p− ṗ〉 ≥ 0 (A.1.2)

for all y ∈ P .
Assume that z = x∗ in inequality (A.1.1). Then,

〈ẋ + α∇Lx(x, p + ṗ), x∗ − x− ẋ〉 ≥ 0. (A.1.3)

Considering that ẋ = d/dt(x− x∗), we represent (A.1.3) in the form

−
〈

d

dt
(x− x∗), x− x∗

〉
− |ẋ|2 + α〈∇Lx(x, p + ṗ), x∗ − x〉 − α〈∇Lx(x, p + ṗ), ẋ〉 ≥ 0. (A.1.4)

We estimate the third summand in (A.1.4) by using the convexity of the function L(x, p) in
the variable x:

〈∇Lx(x, p + ṗ), x∗ − x〉 ≤ L(x∗, p + ṗ)− L(x, p + ṗ). (A.1.5)
We rewrite (A.1.4) once again, preliminarily adding to its left side a zero quantity in the form

L(x + ẋ, p + ṗ)− L(x + ẋ, p + ṗ):

1
2

d

dt
|x− x∗|2 + |ẋ|2 + αL(x, p + ṗ)− αL(x∗, p + ṗ) + αL(x + ẋ, p + ṗ)−

− αL(x + ẋ, p + ṗ) + α〈∇Lx(x, p + ṗ), ẋ〉 ≤ 0.
(A.1.6)

We estimate the sum of the third, sixth, and seventh summands in (A.1.6) by using Lipschitz
inequality (15):

L(x + ẋ, p + ṗ)− L(x, p + ṗ)− 〈∇Lx(x, p + ṗ), ẋ〉 ≤ 1
2
L1|ẋ|2. (A.1.7)

We estimate the fourth summand in (A.1.6) using the system of inequalities

L(x∗, p + ṗ) ≤ L(x∗, p∗) ≤ L(x + ẋ, p∗). (A.1.8)
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Using the estimates (A.1.7) and (A.1.8), we represent (A.1.6) as

1
2

d

dt
|x− x∗|2 +

(
1− α

1
2

L1

)
|ẋ|2 + α(L(x + ẋ, p + ṗ)− L(x + ẋ, p∗)) ≤ 0. (A.1.9)

We now turn to the analysis of the second equation in (12). For this, we assume that y = p∗

in variational inequality (A.1.2) and thus obtain

〈ṗ− α∇Lp(x + ẋ, p), p∗ − p− ṗ〉 ≥ 0. (A.1.10)

Hence it follows that

−1
2

d

dt
|p− p∗|2 − |ṗ|2 − α〈∇Lp(x + ẋ, p), p∗ − p〉+ α〈∇Lp(x + ẋ, p), ṗ〉 ≥ 0. (A.1.11)

This inequality is symmetric to (A.1.9), and so the procedure of its rearrangement is the
same. The basic stages of this procedure are as follows. Considering the concavity of the
function L(x, p) in the variable p, we estimate

〈∇Lp(x + ẋ, p), p∗ − p〉 ≥ L(x + ẋ, p∗)− L(x + ẋ, p). (A.1.12)

Using the above estimate, we represent (A.1.11) as

1
2

d

dt
|p− p∗|+ |ṗ|2 + α(L(x + ẋ, p∗)− L(x + ẋ, p))− αL(x + ẋ, p + ṗ)+

+ αL(x + ẋ, p + ṗ)− α〈∇Lp(x + ẋ, p), ṗ〉 ≤ 0.
(A.1.13)

Next, according to (16) we have

L(x + ẋ, p + ṗ)− L(x + ẋ, p)− 〈∇Lp(x + ẋ, p), ṗ〉 ≥ 1
2

L2 |ṗ|2. (A.1.14)

Hence,
1
2

d

dt
|p− p∗|2 +

(
1− α

1
2

L2

)
|ṗ|2 + α(L(x + ẋ, p∗)− L(x + ẋ, p + ṗ)) ≤ 0. (A.1.15)

Summing the inequalities (A.1.9) and (A.1.15) we get

1
2

d

dt
|x− x∗|2 +

1
2

d

dt
|p− p∗|2 +

(
1− α

1
2

L1

)
|ẋ|2 +

(
1− α

1
2

L2

)
|ṗ|2 ≤ 0. (A.1.16)

Because α < min
{

2
L1

,
2
L2

}
, we have

(
1− α

1
2
L1

)
> 0 and

(
1− α

1
2
L2

)
> 0.

We integrate inequality (A.1.16) between t0 and t:

|x− x∗|2 + |p− p∗|2 + 2
(

1− α
1
2
L1

) t∫

t0

|ẋ|2dτ+

+ 2
(

1− α
1
2
L2

) t∫

t0

|ṗ|2dτ ≤ |x0 − x∗|2 + |p0 − p∗|2,
(A.1.17)

where x0 = x(t0) and p0 = p(t0). The boundedness of the trajectory |x(t)− x∗|2 + |p(t)− p∗|2 ≤
≤ |x0−x∗|2+ |p0−p∗|2 follows from (A.1.17), and since x0, p0 is an arbitrary initial value, the set

of equilibrium points is stable in the sense of Lyapunov. In this case, the integrals
t∫

t0

|ẋ|2dτ < ∞

and
t∫

t0

|ṗ|2dτ < ∞ converge as t ⇒∞.
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We now prove the asymptotic stability of the set of equilibrium points. Assuming that there
exists a quantity of ε > 0 such that |ẋ(t)| ≥ ε and |ṗ(t)| ≥ ε for all t ≥ t0, we �nd that this
assumption contradicts the convergence of the integrals. Consequently, a subsequence of instants
of time ti ⇒ ∞ exists such that |ẋ(ti)| → 0 and |ṗ(ti)| → 0. Because x(t), p(t) is bounded, an
element x′, p′ such that x(ti) → x′ and p(ti) → p′ as ti →∞ exists.

We examine inequalities (A.1.1) and (A.1.2) for all times ti → ∞ and, passing to the limit,
write out the limit inequalities

〈∇Lx(x′, p′), z − x′〉 ≥ 0, 〈∇Lp(x′, p′), y − p′〉 ≤ 0 (A.1.18)

for all z ∈ Q and y ∈ P . This system of inequalities is equivalent to (1) and, hence, x′ = x∗ ∈ Q
and p′ = p∗ ∈ P .

Thus, any limit point of the trajectory x(t), p(t) is solution to the problem, in which case
the quantity |x(t)− x∗|2 + |p(t)− p∗|2 decreases monotonically. These two facts taken together
imply that the trajectory x(t), p(t) can have only one limit point, i.e., the trajectory x(t), p(t)
converges monotonically to one of the solutions of the problem: x(t) → x∗ and p(t) → p∗ as
t ⇒∞. This proves the theorem.

Appendix 2

Proof of Theorem 2. We represent system (23) of equations in the form of the variational
inequalities

〈x + ẋ− x + α∇Lx(x, ū), z − x− ẋ〉 ≥ 0 (A.2.1)
for all z ∈ Q,

〈p + ṗ− p− αg(x + ẋ), y − p− ṗ〉 ≥ 0 (A.2.2)
for all y ∈ P , and

〈ū− p− αg(x), y − ū〉 ≥ 0 (A.2.3)
for all y ∈ P .

We estimate the value of the deviation of the vectors p + ṗ and ū in (23) � (25). For this, we
use the Lipschitz inequality in the form

|g(x + h)− g(x)| ≤ |g| |h| (A.2.4)

for all x and x + h from Q, where |g| is the Lipschitz constant for the map g(x) on a certain set,

|p + ṗ− ū| ≤ |π+(p + αg(x + ẋ))− π+(p + αg(x))| ≤ α|g(x + ẋ)− g(x)| ≤ α |g| |ẋ|. (A.2.5)

Setting z = x∗ in (A.2.1) yields

〈ẋ + α∇Lx(x, ū), x∗ − x− ẋ〉 ≥ 0. (A.2.6)

We write this inequality in the form

1
2

d

dt
|x− x∗|2 + |ẋ|2 + α〈∇Lx(x, ū), x∗ − x〉+ α〈∇Lx(x, ū), ẋ〉 ≤ 0. (A.2.7)

We add to the left side of (A.2.7) a zero quantity in the form L(x + ẋ, ū) − L(x + ẋ, ū).
Furthermore, using the convexity of the function L(x, p) in x in the form of the inequality

〈∇Lx(x, ū), x∗ − x〉 ≤ L(x∗, ū)− L(x, ū), (A.2.8)
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we transform (A.2.7):

1
2

d

dt
|x−x∗|2+|ẋ|2+αL(x, ū)−αL(x∗, ū)−L(x+ẋ, ū)+L(x+ẋ, ū)+α〈∇Lx(x, ū), ẋ〉 ≤ 0. (A.2.9)

We recall that L(x, p) = f(x)+〈p, g(x)〉 and ∇LxL(x, p) = ∇f(x)+∇g>(x)p, where ∇g>(x)
is the transposed matrix in which every column is the vector gradient of the corresponding scalar
function from g(x).

We transform separately the sum of the third, �fth, and seventh summands in (A.2.9) using
for this purpose the boundedness of the trajectory ū = π+(p+αg(x)) and the Lipschitz inequality
in the form of (14):

L(x + ẋ, ū) − L(x, ū)− 〈∇Lx(x, ū), ẋ〉 = f(x + ẋ) + 〈ū, g(x + ẋ)〉 − f(x)+

+ 〈ū, g(x)〉 − 〈∇f(x), ẋ〉 − 〈∇g>(x)ū, ẋ〉 ≤ 1
2
(L0 + 〈L, C〉)|ẋ|2. (A.2.10)

Here L0 is the Lipschitz constant for ∇f(x) and L is the Lipschitz vector constant for ∇g(x).
In the �nal expression, taking into account that ū = π+(p + αg(x)) ≤ C, we use the estimate
〈L, ū〉 ≤ 〈L,C〉, where C is the a priori vector constant limiting the trajectory ū = π+(p+αg(x)).

We estimate the fourth summand in (A.2.9) by using system of inequalities (1):

L(x∗, ū) ≤ L(x∗, p∗) ≤ L(x + ẋ, p∗). (A.2.11)

Using estimates (A.2.10) and (A.2.11), we rewrite inequality (A.2.9):

1
2

d

dt
|x− x∗|2 +

(
1− α

2
(L0 + 〈L,C〉)

)
|ẋ|2 + α(L(x + ẋ, ū)− L(x + ẋ, p∗)) ≤ 0

or
1
2

d

dt
|x− x∗|2 +

(
1− α

2
(L0 + 〈L,C〉)

)
|ẋ|2 + α(〈ū− p∗, g(x + ẋ)〉) ≤ 0. (A.2.12)

We will return to (A.2.12) a little later, while now we consider variational inequalities (A.2.2)
and (A.2.3). Letting y = p∗ in (A.2.2), we obtain

〈ṗ− αg(x + ẋ), p∗ − p− ṗ〉 ≥ 0 (A.2.13)

or
〈ṗ, p∗ − p− ṗ〉 − α〈g(x + ẋ), p∗ − p− ṗ〉 ≥ 0. (A.2.14)

In a similar fashion, setting y = p + ṗ in (A.2.3) we obtain

〈ū− p− αg(x), p + ṗ− ū〉 ≥ 0 (A.2.15)

or

〈ū− p, p + ṗ− ū〉+ α〈g(x + ẋ)− g(x), p + ṗ− ū〉 − α〈g(x + ẋ), p + ṗ− ū〉 ≥ 0. (A.2.16)

In view of estimate (A.2.5), we rewrite the last inequality in the form

〈ū− p, p + ṗ− ū〉+ α2|g|2|ẋ|2 − α〈g(x + ẋ), p + ṗ− ū〉 ≥ 0. (A.2.17)

Adding together (A.2.14) and (A.2.17) gives

〈ṗ, p∗ − p− ṗ〉 − α〈g(x + ẋ), p∗ − ū〉+ 〈ū− p, p + ṗ− ū〉+ α2|g|2|ẋ|2 ≥ 0. (A.2.18)

We transform the third summand in (A.2.18) using the identity

|p1 − p2|2 = |p1 − p3|2 + 2〈p1 − p3, p3 − p2〉+ |p3 − p2|2. (A.2.19)
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For this purpose, suppose that p1 = p, p2 = p + ṗ and p3 = ū in (A.2.19). We then have

〈ū− p, p + ṗ− ū〉 =
1
2
|ṗ|2 − 1

2
|p− ū|2 − 1

2
|p + ṗ− ū|2.

Next, using to the inequality

1
4
|p1 − p2|2 ≤ 1

2
|p1 − p3|2 +

1
2
|p3 − p2|2, (A.2.20)

we estimate
1
4
|ṗ|2 ≤ 1

2
|p− ū|2 +

1
2
|p + ṗ− ū|2.

Taking into account the estimates obtained and also 〈ṗ, p− p∗〉 =
1
2

d

dt
|p− p∗|2 we obtain

1
2
|p− p∗|2 +

3
4
|ṗ|2 − α2|g|2|ẋ|2 + α〈g(x + ẋ), p∗ − ū〉 ≤ 0. (A.2.21)

Summing (A.2.12) and (A.2.21) yields

1
2

d

dt
|x− x∗|2 +

1
2

d

dt
|p− p∗|2 +

(
1− α

2
(L0 + 〈L,C〉)− α2|g|2

)
|ẋ|2 +

3
4
|ṗ|2 ≤ 0. (A.2.22)

We determine the bounds of changes in the parameter a from the condition

1− α

2
(L0 + 〈L,C〉)− α2|g|2 > 0.

The left side of this inequality represents a parabola in the variable a with the vertex in the upper
half-plane and the ends directed downward. The right point of intersection of the parabola with
the 0x axis has a coordinate

0 < α <

(
(L0 + 〈L,C〉)2 + 16|g|2)1/2 − (L0 + 〈L, C〉)

4|g|2 .

Therefore, if we select a value of the parameter α that is smaller than this coordinate, the
coe�cient |ẋ|2 in (A.2.22) will be positive. Removing the irrationality in the numerator of this
fraction, it is convenient to represent the bounds on α in the form

0 < α <
4

((L0 + 〈L,C〉)2 + 16|g|2)1/2 + (L0 + 〈L,C〉)
.

Thus, under this condition, the coe�cient |ẋ|2 in (A.2.22) is nonnegative. In this case,
inequality (A.2.22) is similar to inequality (A.1.16) in Theorem 1. The proof of Theorem 2 is
completed by analogy with the proof of Theorem 1. This establishes the theorem.
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